
www.manaraa.com

Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2010-07-12 

Multidisciplinary Assessment and Documentation of Past and Multidisciplinary Assessment and Documentation of Past and 

Present Human Impacts on the Neotropical Forests of Petén, Present Human Impacts on the Neotropical Forests of Petén, 

Guatemala Guatemala 

Christopher Stephen Balzotti 
Brigham Young University - Provo 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Animal Sciences Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Balzotti, Christopher Stephen, "Multidisciplinary Assessment and Documentation of Past and Present 
Human Impacts on the Neotropical Forests of Petén, Guatemala" (2010). Theses and Dissertations. 2129. 
https://scholarsarchive.byu.edu/etd/2129 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/76?utm_source=scholarsarchive.byu.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2129?utm_source=scholarsarchive.byu.edu%2Fetd%2F2129&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


www.manaraa.com

 

Multidisciplinary Assessment and Documentation of Past and Present Human  

Impacts on the Neotropical Forest of Petén, Guatemala 

 
 
 

 
Christopher S. Balzotti 

 
 
 
 
 

A thesis submitted to the faculty of 
Brigham Young University 

in partial fulfillment of the requirements for the degree of 
 

Master of Science 
 
 
 
 
 

Steven L. Petersen, Chair 
Richard E. Terry 
Loreen Allphin  

 
 
 
 
 

Department of Plant and Wildlife Sciences 

Brigham Young University 

August 2010 

 
 

Copyright © 2010 Christopher S. Balzotti 

All Rights Reserved 

 
 



www.manaraa.com

 

ABSTRACT 

 

Multidisciplinary Assessment and Documentation of Past and Present Human  

Impacts on the Neotropical Forest of Petén, Guatemala 

 

Christopher S. Balzotti 

Department of Plant and Wildlife Sciences 

Master of Science 

 
Tropical forests provide important habitat for a tremendous diversity of plant and 

animal species. However, limitations in measuring and monitoring the structure and 
function of tropical forests has caused these systems to remain poorly understood. 
Remote-sensing technology has provided a powerful tool for quantification of structural 
patterns and associating these with resource use. Satellite and aerial platforms can be 
used to collect remotely sensed images of tropical forests that can be applied to 
ecological research and management. Chapter 1 of this article highlights the resources 
available for tropical forest remote sensing and presents a case-study that demonstrates its 
application to a neotropical forest located in the Petén region of northern Guatemala. The 
ancient polity of Tikal has been extensively studied by archaeologists and soil scientists, 
but little is known about the subsistence and ancient farming techniques that sustained its 
inhabitants. The objective of chapter 2 was to create predictive models for ancient maize 
(Zea mays L.) agriculture in the Tikal National Park, Petén, Guatemala, improving our 
understanding of settlement patterns and the ecological potentials surrounding the site in 
a cost effective manner. Ancient maize agriculture was described in this study as carbon 
(C) isotopic signatures left in the soil humin fraction. Probability models predicting C 
isotopic enrichment and carbonate C were used to outline areas of potential long term 
maize agriculture. It was found that the Tikal area not only supports a great variety of 
potential food production systems but the models suggest multiple maize agricultural 
practices were used.       
 
 
 
 
 
Keywords: Tikal, Guatemala, Classic Maya, Stable Carbon Isotopes; AIRSAR, Landsat, 
Ancient Agriculture, Hyperniche, Non-Parametric Multiplicative Regression, Model, 
Modeling, Predictive Modeling 
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CHAPTER 1 

 

REMOTE SENSING AS A TOOL FOR TROPICAL ECOLOGY 

Chris S. Balzotti1, Steven L. Petersen1, Richard E. Terry1, Andrew K. Scherer2 and Charles 
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REMOTE SENSING AS A TOOL FOR TROPICAL ECOLOGY 

ABSTRACT 

Tropical forests provide important habitat for a tremendous diversity of plant and animal species. 

However, limitations in measuring and monitoring the structure and function of tropical forests 

has caused these systems to remain poorly understood. Remote sensing technology has provided 

a powerful tool for quantification of structural patterns and associating these with resource use. 

Satellite and aerial platforms can be used to collect remotely sensed images of tropical forests 

that can be applied to ecological research and management.  The purpose of this article is to 

highlight the resources available for tropical forest remote sensing and to present a case-study 

that demonstrates its application to a neotropical forest located in the Petén region of northern 

Guatemala.  

Tropical Forest Ecology and Classification  

The term “tropical rain forest” was coined by the French botanist Andreas Franz Wilhelm 

Schimper during the late 1800’s (Richards 1996). Since this time, a variety of tropical forest 

studies have contributed to our understanding of this important biome. Nonetheless, the 

biological composition and ecological dynamics of these forests still remains poorly understood 

(Skole and Tucker 1993; Achard et al. 2002; Carr 2004; Mayaux et al. 2005). This lack of 

information can be attributed in part to the complexity of these forest ecosystems as well as the 

difficulties in accessing many of the regions where they occur. Furthermore, Pimm et al. (2001) 

suggest that the greatest limitation is our inability to synthesize the existing information that has 

been collected. The objectives of this article are four-fold: first, to provide an introduction to 

tropical forests, their global importance and research-related challenges; second, to provide a 
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brief history of remote sensing and its applicability to tropical ecology; third, to look at the actual 

process of tropical ecology research using remote sensing; and fourth, to present a case-study 

demonstrating the use of remote sensing to assess land change in a neotropical forest in northern 

Guatemala. 

Compared to temperate climate zones, the tropics are home to a greater diversity of 

landscapes, more complex forest canopies, and higher species richness (Nagendra 2001).  In 

1971, Holdridge et al. developed a tropical classification system that gave rise to the three 

dimensional Holdridge Life Zone System which uses simplified climatic data to predict tropical 

ecological zones. Although this system has been used extensively, there  remains a need for a 

universally accepted tropical classification system that ensures the consistent classification of  

multiple ecological/regional identifiers. For example, the neotropical forests of Tikal National 

Park in Petén, Guatemala were studied by Schulze and Whitacre for forest structure using field 

collected data in 1999. They found that using Holdridge’s classification system, Tikal was 

classified as a subtropical moist forest. However, when Schulze and Whitacre used an alternate 

method developed in 1968 by Pennington and Sarukhan, the forest was classified as tropical 

semi-deciduous. Subsequently, efforts are currently being made to improve tropical forest 

classification accuracy. In North America, the U.S. Federal Geographic Data Committee 

(FGDC) was created in 1994 to a federal geospatial vegetation classification standard for the 

U.S. The Food and Agricultural Organization (FAO) is currently implementing a universal land 

cover classification system (LCCS). However, this system is in its infancy and global acceptance 

is necessary for this system to be successful. These differences need to be resolved if tropical 

forest classification and documentation with remote sensing is to be fully utilized. 
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Tropical Deforestation  

Tropical deforestation has long been of concern among the scientific community, with the first 

proposed inventory of the world’s forests in 1945 (Holmgren and Persson 2002).  Despite 

interest, the first estimations of tropical forest deforestation were not done until much later 

(Myers 1980). Of the 3.9 billion hectares of forests worldwide, 56% were classified in 2000 as 

tropical or subtropical by the FAO. Although less than 10% of the earth’s surface is comprised of 

tropical forests, , they are home to 50% of all plant species (Mayaux 2005). The tropics also 

contribute to global carbon sequestration (Foody & Curran 1994, Malhi & Grace 2000, Schimel 

et al. 2001) and influence climatic precipitation and temperature patterns.  Clearing of tropics 

leads to a regional precipitation decrease as well as a loss of net radiation and evaporation. This 

change affects the regional atmospheric circulation, decreases total regional precipitation, and 

changes the surface climate (McGuffie et al. 1995).  

With increasing human influences, including an ever growing global population and 

economy, tropical forests and their ecological diversity are disappearing at an alarming rate.  

This loss is influenced by  multiple factors including corporation and government mining and 

logging, local displacement of ranchers and farmers, and accelerated population growth (Pimm et 

al. 2001, Geist and Lambin 2002, Carr 2004). In the early 1990’s, estimates for the previous 50 

years identified an alarming nine hundred million hectares of tropical humid forests that had 

been lost or degraded (Myers 1992). The FAO (2001) reported an annual decrease of 

approximately 15.2 million hectares of tropical forests worldwide between 1990 and 2000. In 

contrast, all other forest types combined had annual losses of only 0.9 million hectares . 

However, Achard et al. (2002) found that FAO overestimated tropical humid forest extent by 

23%. Regardless, this estimation represents a global loss of over 3 million hectares between 1990 
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and 1997. With research unable to keep up with these rapid losses,  newer tools such as remote 

sensing and GIS are crucial to the documentation and investigation of the world’s species-rich 

tropical forests (Kerr and Ostrovsky 2003, Carr 2004).  

Remote Sensing  

It could be argued that early naturalists such as Alfred Russel Wallace, Charles Darwin 

and Alexander von Humboldt, who produced detailed drawings and paintings of tropical forests, 

were practicing  remote sensing.  Humboldt pushed for accurate paintings of tropical landscapes 

combining the science of reporting patterns and the art of accurate painting (Bunkse 1981).Over 

time, remote sensing has expanded with technological developments that have helped establish a 

new generation of tropical ecologists.    

Early aerial photography gained widespread use in forest inventories during the 1940s 

(Lu 2006). The modern era of remote sensing became widely established in the early 1970’s with 

the addition of remote sensing satellites and improved platforms. In 1960, the Television and 

Infrared Observation Satellite (TIROS-1) was the first to successfully use a television camera to 

view limited portions of the planet. Although TIROS-1 only operated for 78 days, it 

demonstrated the utility of satellites as effective remote sensing platforms, leading to subsequent 

missions (JPL 2009). The launch of Earth Resource and Technology Satellite (ERTS-1), later 

renamed Landsat-1 in 1972, was the awakening of current world-wide imaging spectrometry 

(Goetz 2009). The drive to build Landsat-1 began in the early 1960’s. However, permission from 

federal organizations to begin construction did not occur until 1970. Once permission was 

granted, construction was complete and the satellite was ready for launch only two years later 

(JPL 2009). Since that time, six additional Landsat satellites have been placed into orbit, losing 
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only Landsat-6 before reaching orbit in 1993. Landsat 7, a versatile sensor launched in 1999, has 

the ability to record data at resolutions of 28.5m at visible and near infra-red (VNIR) 

wavelengths (4 bands) and short wavelength infrared (SWIR) (2 bands), at 14.25m in a 

panchromatic band (one very broad band displayed in black and white) and at 60m in the thermal 

band (Markham et al. 2004). An eighth satellite is scheduled to launch in 2012 under the name 

Landsat Data Continuity Mission (LDCM) (Goetz 2007).       

The quest to better understand weather patterns provided tropical remote sensing with a 

valuable sensor, the Advanced Very High Resolution Radiometer (AVHRR). Originating in 

1979, AVHRR became an important part of a generation of satellites that collect global climate 

and environmental data. With a revisit time of every 14.5 days and a resolution of 1.1 km, this 

satellite continues to provide tropical researchers with up-to-date coarse resolution landscape 

information.  In 1981, nearly a decade after the launch of the first Landsat satellite, hyperspectral 

sensing began with the launch of the Shuttle Multispectral Infrared Radiometer (SMIRR) (Goetz 

2009). Hyperspectral imaging is a term that came from a technique of imaging spectrometry 

defined in Goetz et al. (1985) as “the acquisition of images in hundreds of contiguous, registered, 

spectral bands such that for each pixel a radiance spectrum can be derived”.  

Around the same time, active sensors began to be used for remote sensing. Active sensors 

(Figure 1) use a self generated illumination, eliminating the reliance on the sun needed by 

passive sensors such as Landsat (Figure 2). Active sensors penetrate cloud cover that passive 

sensors cannot, proving to be an advantage in tropical areas that have cloud cover much of the 

year. The first experimental spaceborn imaging radar, Seasat, was developed in 1978 by NASA’s 

Jet Propulsion Laboratory (JPL) (Elachi 1980). Although Seasat’s focus was the ocean and only 

transmitted data for 106 days, it was a key to future imaging radar (JPL 2009). After the success 
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of Seasat, many Synthetic Aperture Radar (SAR) systems were created across the globe. By 

1995, there were at least 12 SAR’s ranging from aircraft-mounted systems such as the Airborne 

Synthetic Aperture Radar (AIRSAR) (developed by NASA’s JPL in 1987 to test new radar 

technology for the purpose of ecological studies) (Pope et al. 1994) to spaceborn systems 

(ALMAZ-1 Russia, ERS-1 Europe, JERS-1, Japan RADARSAT Canada) (Birk et al. 1995).  

A significant step for remote sensing came in 1999 with the launch of IKONOS , the 

world’s first privately owned sub-meter satellite. The resolution of IKONOS at nadir (the point 

directly below the sensor) is 0.83 meters in the panchromatic band and 3.2 meters in the 

multispectral bands (i.e. near infrared, red, green and blue). IKONOS resolution without nadir is 

1 meter panchromatic and 4 meters multispectral (GeoEye 2009). The finer resolution private 

satellites have opened up a new market in remote sensing. New sensor systems are rapidly being 

created by governments and private companies, creating a much needed niche for remote sensing 

tropical research.     

 Compatibility of Remote Sensing and Tropical Ecology 

The remote sensing process is made up of several components: data acquisition, pre-

processing, pattern analysis, ground referencing processes and accuracy assessment. Air and 

spaceborn remote sensing can provide valuable data at multiple spacial and temporal scales 

within tropical ecosystems, sometimes referred to as tropical landscape ecology. The term 

“landscape ecology” was coined in 1939, and further defined in 1950 by Carl Troll (Troll 1950; 

Turner 2005). Turner (2005), after reviewing multiple definitions, found the commonality 

between these definitions to be a focus on the reciprocal interaction among spatial heterogeneity 

and ecological processes (Risser et al. 1984, Urban et al. 1987, Turner 1989, Pickett & 
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Cadenasso 1995, Turner et al. 2001).  The discipline began to gain popularity in the 1980’s as 

aerial photography became available to a wider audience (Turner 2005). As remote sensing has 

rapidly advanced over the past decades, it has become more closely associated with modern 

landscape ecology.         

Although relatively little is known or efficiently shared about the tropics, early remote 

sensing of forest changes focused primarily on tropical forest loss (Iverson et al. 1989). Since 

that time, remote sensing has been shown to be a powerful tool in assessing and modeling  

biodiversity in the tropics including LAI, NPP and others (Fuller et al. 1998, Kerr & Ostrovsky 

2003, Turner et al. 2003, Nagendra & Rocchini 2008), monitoring of deforestation and land use 

change (Nelson and Holben 1986, Tucker et al. 1984, Malingreau and Tucker 1988, Sader & 

Joyce 1988, Green & Sussman 1990, Skole & Tucker 1993, Hansen et al. 2000, Sader et al. 

2001, Achard et al. 2002, Mayaux et al. 2005, Chowdhury 2006, Harper et al. 2007, Hansen et al. 

2008, Lindquist et al. 2008, Reddy et al. 2009) and in predicting carbon stocks and biomass 

(Zhang et al. 2002, Thenkabail et al. 2004, Lu 2005, Lu 2006, Sanchez-Azofeifa et al. 2009). 

Some active sensors such as Lidar are able to produce digital terrain models (DTMs) and digital 

canopy models (DCMs) (Clark et al. 2004), giving researchers crucial terrain and forest structure 

information that would otherwise be practically unobtainable for tropical areas. 

 It is important not to over-sell remote sensing as inaccuracies can arise and the 

applicability is not relevant to every ecological study. Satellites and other sensors are subject to 

imagery errors that are often difficult to detect without careful evaluation (Kerr & Ostrovsky 

2003). Pimm et al. (1991) found that most ecological studies are done on small plots of only a 

few hectares in size over a short period of time. This limitation in size (spatial resolution) and 

duration (temporal resolution) makes correlation of field-based data to remote sensing data 
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challenging. Additionally, recent concerns are future availability, continuity, and global coverage 

of satellite imagery, which have opened a dialog among researchers. Loarie et al. (2007) brought 

to attention first, the lack of global coverage with higher-resolution sensors such as IKONOS and 

QuickBird, second, a potential gap in Landsat data collection (if the current Landsat satellites fail 

before the LDCM is operational), and third, the cost and availability of replacement sensors for 

researchers. Since Landsat has a history of providing the longest and most inclusive continual 

global dataset, this potential gap would be significant (Williams et al. 2006). In response to 

Loarie et al., Kark et al. (2008) and Loveland et al. (2008) explained that the growing world 

satellite community has the ability to fill the potential gap with current sensors if collaboration 

can be accomplished. The responses, however, did not address the high-resolution availability 

deficit (Loarie et al. 2008). What the authors did agree on is the need for better coordination and 

funding for future remotely sensed image collection and distribution (Loarie et al. 2007, Loarie 

et al. 2008 Kark et al. 2008, Loveland et al. 2008). With much of the worlds tropics located in 

countries with limited resources, this is a concern for all tropical researchers.                  

Data Acquisition 

The rapid advancement of remote sensing technology over the past thirty years has 

increased data availability, opening doors to researchers worldwide (Kark et al. 2008). 

Nevertheless, the availability and accessibility of imagery is not evenly represented across the 

globe. Subsequently, many tropical areas have limited imagery available (Kark et al. 2008). Due 

to limited availability of tropical imagery, costs to acquire new data greatly contribute to the 

overall expense of any tropical ecology research project. Even though remote sensing has been 

shown to be a cost-effective tool in tropical studies (Mumby et al. 1999, Roller 2000, Mayaux et 

al. 2005, Loarie et al. 2007, Reddy et al. 2009), it is still expensive. Ten years ago, 42 of 60 
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tropical coast managers interviewed by Mumby et al. (1999), stated that cost was the greatest 

deterrent to their use of remote sensing data. 

The outcome of any study involving how pattern relates to process is influenced by the 

scale set by the observer. Scale in this context includes both spatial and temporal. Discussion on 

the appropriate scale for tropical ecology studies remains open and is beyond the scope of this 

article. However, some ideas on how to address scale are worth mentioning.  Levin (1992) 

emphasized that there is no single scale universal to every natural ecological study. An 

understanding of the processes involved is crucial in justifying a scale to work at. If data is 

available, multiple spatial and temporal scales should be used. Platform selection(s) for any 

remote sensing project is dependent on the project’s temporal and spatial scales.  Sensors range 

from high resolution, large scale photography, often flown by small aircraft, to small scale data 

produced by hyperspectral sensors stationed on satellites. Lists of the available sensors, their 

uses and specifications can be found in publications reported by Turner et al. (2003), Kerr and 

Ostrovsky (2003), Boyd and Danson (2005), Jensen (2005), Nagendra and Rocchini (2008) and 

Goetz (2009) (hyperspectral). Future sensors currently in the planning stages were reported by 

Kark et al. (2008). Coarse resolution sensors such as AVHRR have been used and accepted for 

globally-scaled land change projects. However, they have fallen short for local land managers 

and more localized research, such as biodiversity studies (Mayaux et al. 2005). For example, if a 

study was only concerned about land change comparing forested versus cleared land, Landsat 

30m resolution imagery would be sufficient for the study (Figure 3). If the study involved land 

conversions of a smaller area, such as forest to pasture, bare ground or crop land, a finer 

resolution image, such as 4m resolution IKONOS imagery (Figure 4) or 1m resolution aerial 

photography (Figure 5) would be more appropriate.  
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One disadvantage to finer resolution sensors is expense, with the exception of the 

recently available Landsat imagery at little to no cost. Use of multiple sensors at varying 

resolution may be a viable solution in response to cost issues associated with larger area studies. 

Multiple sensors may be necessary for most projects because no individual sensor meets all 

requirements of a comprehensive tropical forest study (Malingreau et al. 1992). Hansen et al. 

(2008) suggested that for global or large scale (ecologically-speaking) humid tropical forest 

estimations, moderate resolution sensors such as MODIS can be used to find areas of likely 

forest cover loss. The selected areas can then be assessed using finer resolution imagery such as 

Landsat.     

Pre Processing 

Prior to analyzing patterns of tropical forest structure, preprocessing is required to eliminate data 

registration errors that occur during image acquisition. The type of preprocessing required 

depends on the characteristics of the remote sensing platform and typically involves raw image 

data. The four main types of preprocessing techniques include geometric correction, radiometric 

correction and calibration, noise removal, and georeferencing.  Geometric correction accounts 

for variations in the altitude, attitude, and velocity of the sensor as well as irregularities in the 

earth’s rotation, curvature, relief, and atmospheric refraction. Radiometric correction and 

calibration take into consideration atmospheric conditions, earth-sun distance, sun elevation, and 

haze.  Noise removal eliminates unwanted disturbances in the data such as sensor drift or 

malfunction, electronic interference, or problems that occur during signal digitization and data 

recording. Georeferencing specifies the location of the acquired imagery in relation to the earth’s 

surface, containing information on spatial location and pixel size. For example, if AVHRR 

images are used with higher resolution SPOT XS or Landsat data for a multi-sensor area-change 
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study, an error of only plus or minus 1 pixel in AVHRR transfers to a 50 pixel error in SPOT XS 

(Van et al. 2008)  

Analysis  

Interpreting patterns in tropical systems can be confounded by their high spatio-temporal 

variability and a lack of available field-based information on ecosystem structure and function. 

Furthermore, remote sensing methods found to work in tropical moist or dry systems may not 

work in nearby tropical wet forests. During the early Landsat era, researchers were selected by 

NASA in the 1970’s to investigate the multispectral images obtained from Landsat-1. Using the 

full resources of the JPL, ground-referenced data observed by the researchers did not explain all 

the patterns seen in the 4 bands of the early satellite imagery (Goetz 2009). Alexander Goetz, one 

of the lead researchers of the project said, “It became clear that subtle color variations on the 

images were difficult to identify in the field and spectral reflectance measurements of 

undisturbed, in situ surface samples would be necessary to interpret the image colors properly.” 

(2008).  

Classification of remote sensed images can be done both supervised with training data 

provided by the user as well as unsupervised allowing the software program to select the best fit 

for a defined number of classes. Caution should be used when classifying and quantifying data 

from unknown tropical areas. If preprocessing has been performed correctly, quantifiable change 

and vegetation assessment can be done using vegetation indices such as NDVI. However, sensor 

degradation needs to be accounted for in tropical forest research. Kogan and Zhu (2001) tested 

corrections that were implemented for long term NDVI estimations using AVHRR between 1985 

and 1999. They found that although the corrections worked for temperate areas, it did not work 
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as accurately for deserts and tropical forests. The errors associated with tropical forests were 

thought to be caused by a sharp increase in stratospheric aerosols over tropical areas.  This is of 

real concern because many satellites are operating beyond their expected life spans. There are a 

variety of software programs available to assist in statistical analysis and sensor correction of 

tropical remote sensed data (Table 1).     

Ground Referencing (in situ) and Accuracy Assessment  

 Accuracy assessment is the means to verify the quality of the information derived from remote 

sensed data. Accuracy assessment can be based on ground referenced data. Ground referencing, 

often incorrectly referred to as ground truthing, is a critical aspect in the development of remote 

sensing products. Jensen (2005) stated “it is a misnomer to refer to in situ data as ground truth 

data. Instead, we should refer to it simply as in situ ground reference data, and acknowledge that 

it also contains error.” Beyond the semantics of the term used, there are real questions that the 

remote sensing of tropical ecosystem community needs to ask. Key questions are discussed 

below.   

How accurate are the ground reference data?  

Seefeldt and Booth (2006), working with remote sensing in sagebrush, submitted that there were 

no cover measurements with established accuracy. In a pilot study comparing three in situ 

methods of tree density estimations in the neotropical forests of Petén, Guatemala, large 

variation was found between the methods (Balzotti et al. in preparation). 

Is a standard needed for how much ground data needs to be collected? 
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Ground data can be collected at the same time the imagery is collected to geo-rectify an image. 

Ground reference data can also be used in accuracy assessments to verify classifications and, in 

fine resolution studies, for species spectral identification. Mumby et al. (1999), working in the 

Turks and Caicos islands with Landsat TM imagery, found that the more field sites used, the 

greater the accuracy of the supervised classifications. In many cases, previously collected ground 

cover data or finer resolution imagery is available, but in the tropics, lack of these kinds of data 

makes remote sensing accuracy assessment difficult. Sader et al. (2001), who assessed land use 

change in Petén, Guatemala, used multi-date color composite comparisons to deal with the lack 

of ground data. Oftentimes, the ground referencing method is not clearly stated. There is a wide 

range of methods used for field verifications, from visual assessment to plot-based methods. 

Many of the land change papers reviewed did not conduct in-field tests or did not outline the 

method used. There may be no other aspects of remote sensing and tropical ecology that are 

more varied in how they are done and what is acceptable error than ground referencing and 

accuracy assessment.  

 

 

 

 

 

 



www.manaraa.com

15 
 

CASE STUDY-TROPICAL FOREST ASSESSMENT IN NORTHERN PETÉN, 

GUATEMALA 

Introduction and Background Information 

From 1966 to 1994, Guatemala’s tropical forests decreased by an alarming 38%, which occurred 

primarily in the northern Petén region of Guatemala (Figure 6) (Bilsborrow and Carr, 2001). As 

the population of Petén continues to rise (from 600,000 in 1999 to an expected one million by 

2020), increased deforestation rates are predicted to continue (Grandia, 2000). Sader and Joyce 

found 90% of deforestation in Petén occurred within 2 km of roads. (1994). With this sharp 

increase in population, the need to document and manage the existing forests of Petén, 

Guatemala is of the utmost importance, not only for the people of the Petén region but also for 

the global population.  

The Petén region of Guatemala is home to the largest lowland tropical forest in Central 

America (Carr, 2005). The region makes up about one-third of Guatemala’s total surface, 

roughly thirty-six thousand square kilometers in size (Schwartz, 1990). In the late eighties and 

early nineties, heightened awareness arose over the rapid deforestation of the Petén region and 

brought about the creation of the Maya Biosphere Reserve (MBR). The MBR was officially 

created in 1990 with the help of donations from multiple agencies: the United States Agency for 

International Development (USAID), Nature Conservancy, Conservation International, and 

CARE International, as well as many private donors in cooperation with the Guatemalan 

government branch known as the National Council of Protected Areas (CONAP) (Nations, 

2006). The MBR is the most extensive tropical rain forest to remain “intact” north of South 

America (Kaiser, 2001; Carr, 2005). The MBR follows the United Nations Educational, 
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Scientific, and Cultural Organization (UNESCO) action plan for reserves (Sundberg, 1998). The 

action plan for a biosphere calls for nuclear zones where no human habitation or use is permitted, 

a multi-use zone that allows limited resource use (i.e. selective  harvesting of forest products 

such as chicle and Xate palm leaves) and a buffer zone that allows sustainable human use and 

occupation on a much larger scale (Nations, 2006; UNESCO, 1984). The Guatemalan MBR is 

made up of 1.6 million hectares of tropical lowland forest consisting of subtropical moist forests, 

subtropical rain forests, wetlands and savannas (Sundberg, 1998). The MBR is a “protected” 

home to high biodiversity and unique forests as well as a rich Maya history of cultivation, 

making it incomparable to any other tropical forest (Gomez-Pompa et al., 1987). The MBR is 

also home to numerous endangered plants, at least four known endangered insects, two 

endangered reptiles and several endangered mammals such as the howler monkey (Alouatta 

pigra),  Chiapan climbing-rat (Tylomys bullaris),  and Tumbala climbing-rat (Tylomys 

tumbalensis). The MBR also provides one of the largest refuges for the jaguar (Panthera onca), 

ocelot (Leopardus pardalis), white lipped peccary (Tayassu pecari), spider monkey (Ateles spp.), 

scarlet macaw (Ara macao), harpy eagle (Harpia harpyja) and Monelet’s crocodile (Crocodylus 

moreletii) (Nations, 2006). The MBR is currently under extreme environmental stress with rapid 

human migration into the region and in many instances, directly into the nuclear zones. Grunberg 

and Ramos (1998) found that after the regulations creating the MBR were put into effect in 1990, 

the MBR was home to approximately 78,000 people. Twenty-two percent of those inhabitants 

lived in the multi-use zone and 23% lived in the nuclear zone. Many of the people living within 

the MBR were residents before it was officially created, further complicating regulation of the 

forests. The preservation and management of the MBR is a daunting task due to its size and the 

need for constant land inspections. These inspections are necessary in order to make educated 
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decisions regarding tropical forest conservation and preservation. In 1992, satellite images of 

deforestation on a grand scale between Guatemala and Mexico’s borders were published by 

National Geographic (Stuart, 1992).  Carr observed, “Our understanding of the processes of 

deforestation remains inchoate; indeed, even estimates of current tropical forest cover remains 

notoriously unreliable.” Carr included the need for modern inter-disciplinary views into 

deforestation and conservation, referring to remote sensing and GIS studies as possibilities in 

understanding current deforestation rates in the MBR (2004). 

Study Area  

The study area was situated in the Sierra del Lacandon National Park (SLNP), one of the 6 

nuclear zones of the MBR (Figure 7). The SLNP is the second largest protected area in 

Guatemala covering 202,865 ha. (Herrera & Paiz 1999). This area was chosen because of present 

availability of remote sensing data (Landsat, aerial photography, AIRSAR, limited IKONOS and 

others). More importantly, this region is under severe threat of deforestation by illegal groups 

living in the park. The dangers posed by these groups make full ecological ground 

reconnaissance oftentimes untenable. Thus, remote sensing stands as our most powerful tool for 

tracking changes in the park. 

Image Acquisition and Uses  

Landsat images were obtained at no cost from the U.S Geological Survey (USGS). The highest 

resolution data from Landsat 7 is from the panchromatic band at 15 meters. This band was used 

for visual interpretation. The 30-meter resolution bands were used for computer-based 

classification, limiting the size of detectible forest clearance to 30 square meters or greater. 

Furthermore, Landsat 7 has not been fully functional since May, 2003. Despite these limitations, 
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Landsat data was valuable to this project for large-area long-term information. The imagery for 

the SLNP was obtained for multiple years and analyzed for overall vegetation cover and change. 

Aerial photography was obtained from the Defensores de la Naturaleza. The images produced 

sub-meter resolution, which were then used for accuracy assessment of supervised classification 

of Landsat data. The aerial photography was limited temporally because it was only a snapshot in 

2006. The other limitation of note was its limited spectral range with only 3 bands. AIRSAR 10-

meter resolution digital elevation models (DEMs) were used. AIRSAR was flown over the study 

area in March (the dry season) of 2004 by the JPL. These DEMs were created using the C-band 

(0.057 meter wavelength). The use of the C-band allows an assessment of general landscape 

topography based on the canopy height and serves as a means to identify gaps in the canopy 

from naturally fallen trees as well as legal and illegal felling of forest trees. DEM’s were 

obtained from the Alaska Satellite Facility at no cost. The 10-meter resolution DEM was used to 

visualize the topographic position of the forest clearing. 

Preprocessing and Analysis 

Much of the preprocessing was done prior to obtaining the data. The images, despite having been 

previously georeferenced were further referenced to each other using the commercial software 

package, ENVI. All Landsat images were accurate to each other with an error no greater than a 

half-pixel and with root mean square (rms) error values lower than .005 for all years. Training 

sites were created for the following three vegetation types: cleared, burned and forest. These 

training sites were used for supervised classification on Landsat imagery. The accuracy of the 

classification was checked against the aerial photography with a 91% overall Kappa statistic (a 

conservative estimation of accuracy by comparing the agreement to that which is expected by 
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chance (Cohen 1960)). Each year’s change was mapped and statistics were generated (Figure 8 

and Figure 9).  

Results and Discussion 

Between the years 1988 and 2009, it was found that 49.8% of the study area had been altered by 

fire or land clearance. After the creation of the SLNP in 1990, it appeared that conservation was 

possible. However, by 2006, 238 new hectares had been cleared and 2,917 burned. By 2009, 

there was a further increase of 1,494 newly cleared hectares. Fire data for 2009 has not yet been 

generated. The cleared areas are of high concern indicating migration and occupation of lands 

within the park.   

The land change tracking methods utilized in this study will allow the park officials more 

complete up-to-date information on the human-influenced forest changes. This also will support 

future ecological studies. Tracking these changes will assist in vegetative succession studies by 

providing baseline data of cleared areas. Permanent plots are planned in the near future to 

monitor carbon sequestration as well as other ecological functions that can then be compared to 

remote sensed models. Furthermore, the information gleaned from this and related studies will 

support upcoming projects as the park seeks monetary support and legal aid in improved 

maintenance and protection of the park.   

CONCLUSION 

Despite the difficulty in conducting tropical forest research, the ecological importance of these 

forests cannot be neglected. Therefore, effective and efficient methods for collecting and 

synthesizing data are needed for conserving these forests that are currently in rapid decline. 

Remote sensing can be an effective tool for assessing and monitoring tropical forests, in 
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particular when good judgment is used in selecting appropriate sensors and in understanding 

their limitations. Continual data acquisition using cost effective technologies is necessary for the 

future of monitoring tropical forests. To keep up with the rapid technological advancements in 

remote sensing platforms, new ground-based methods covering larger areas over longer periods 

of time are needed and old methods need to be assessed for compatibility. If remote sensing is to 

be fully utilized as a tool in tropical ecology, education is needed to bridge the gap between 

research and management, targeting a diverse group of potential users.       
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(Figure 1) Active sensors use a self generated illumination. The ability to self generate illumination allows active 

sensors to work in conditions that passive sensors cannot.  The timeline listed above is an abbreviated timeline 

containing a few key sensors and dates.   
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(Figure 2) Passive sensors use illumination generated by the sun. Cloud cover and other atmospheric interference 

can distort or block image acquisition. The timeline listed above is an abbreviated timeline containing a few key 

sensors and dates.   
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(Figure 3) Landsat land cover imagery, nuclear zone Sierra de Lacandon National Park Guatemala RGB/ 742 (742 

was chosen to better show forest versus cleared areas) captured 04/10/2005. The area of the red box is 200 square 

meters. Figure resolution is 1:25,43. The black lines are a result of scan line problems and an edge between 2 

Landsat instantaneous-fields-of views (IFOV).  
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(Figure 4) Pan sharpened IKONOS RGB/ 321 from 2007. Resolution of the IKONOS at 1:3,749. The area of the red 

box is 200 square meters. Note the ability to see the structures and variation of the cleared areas.  
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(Figure 5) Aerial photography (RGB/ 123) from 2007 with a resolution at 1:1,881.The area of the red box is 200 

square meters. Note the improved ability to delineate agricultural land from other cleared land, as well as 

structure identification.   
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(Table 1) A list of some popular software packages for preprocessing and statistical evaluation of remotely sensed 

data.  
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(Figure 6) Map of Guatemala showing the department of Petén in red and the Sierra de Lacandon National Park in 

Orange. 
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(Figure 7) Map of Sierra Del Lacandón Park, Petén, Guatemala 
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(Figure 8) Land-change maps generated using Landsat imagery draped over an AIRSAR generated digital elevation 

model. A=1988, B=2000, C=2006, D=2009, E= all years combined.  
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 (Figure 9) Statistical summary in hectares of all years burned and cleared within the SLNP. 
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MODELING THE ANCIENT MAIZE AGRICULTURE POTENTIAL OF LANDFORMS IN 

TIKAL NATIONAL PARK, GUATEMALA 

ABSTRACT 

The ancient polity of Tikal has been extensively studied by archaeologists and soil 

scientists, but little is known about the subsistence and ancient farming techniques that sustained 

its inhabitants The objective of this study was to create a predictive model for ancient maize (Zea 

mays L.) agriculture in the Tikal National Park, Petén, Guatemala, improving our understanding 

of settlement patterns and the ecological potentials surrounding the site in a cost effective 

manner. Ancient maize agriculture was described in this study by carbon (C) isotopic signatures 

of C4 vegetation left in the soil humin fraction. Probability models predicting C isotopic 

enrichment and carbonate C were used to outline areas of potential long term maize agriculture. 

It was found that the Tikal area not only supports a great variety of potential food production 

systems but the models suggest multiple maize agricultural practices were used.       
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INTRODUCTION 

The Maya people have occupied and utilized the Mesoamerican lowlands for millennia 

(Ford, Clarke and Raines 2009). The ancient Maya were not only able to produce food for 

survival; they were successful in construction of permanent political centers, implying that food 

was in sufficient excess to dedicate time and resources to such endeavors. Many of the early 

permanent settlements were located near lowland depressions in the karst topography (bajos) 

(Bullard 1960; Dunning et al. 2002). One such notable political center located in Petén, 

Guatemala surrounded by bajos is Tikal. Estimations of Tikal populations at its peak range from 

30,000-35000 (Sanders 1973), 40,000-49,000 (Haviland 1969, 1972, 2003), 62,000 (Culbert et 

al. 1990), to as high as 69,705-76,699 (Dickson 1980) inhabitants. Even at the lowest 

estimations, the area would be required to supply copious amounts of food to sustain the people 

of Tikal. Although Tikal has been extensively studied, very little is known regarding one of the 

most basic cultural components, food production. Wilken (1971) emphasized the value of finding 

evidence of farming techniques stating that it would provide clues to the development and 

organization of the Maya civilization. Multiple hypotheses have been presented on the subject of 

food production. Some of the early botanists and archaeologists implied ancient Maya use of 

Brosimum alicastrum Sw. (commonly referred to as ramón). Puleston further proposed ramón as 

the main food source of the ancient Maya supplemented by maize (Zea mays L.) (Puleston 1968, 

1971, 1976, 1982; Folan et al. 1979). This was later disputed by Lambert and Arnason (1982), 

Miksicek et al. (1981) and discussed by Peters (1983). Dickson (1980), using a linear model, 

suggested the Tikal populations used a mixed subsistence strategy that incorporated milpa, 

intensive farming, ramón cultivation and root cropping. Webster (1981), in support of a more 

conservative Tikal population and maize as the staple food source, disagreed with Dickson’s 
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maize component of the model. He concluded that the “maize model” (maize as the primary food 

source) was still feasible and that Dickson underestimated the caloric value of maize. Dickson 

(1981) rebutted after running his model with Webster’s suggested higher maize caloric values 

and concluded that populations at Tikal would have been even higher with the adjusted caloric 

values, and that the “maize model” of Maya subsistence “bends to the grave”. Studies involving 

collagen stable carbon isotopes in skeletal remains at Tikal found that maize was a primary food 

source making up 50% or more of the dietary intake (Tykot 2002; Wright 2005). Despite 

disagreements on the extent of maize influence on the diets of the ancient Maya, it is generally 

accepted that the Maya consumed maize to some degree. However, none of the studies 

mentioned above proposed where maize may have been cultivated and thus, there is a need to 

locate ancient maize agricultural sites surrounding Tikal.           

Ancient Maize Identification Using Stable Carbon Isotopes 

Artifactual and structural evidence of ancient agriculture are often difficult to find in the 

Maya lowlands and have not been reported in the Tikal National Park (Nations and Nigh 1980; 

Nigh 2008). Stable C isotope studies have been adapted to delineate areas with histories of 

vegetation change from C3 forest to C4 maize agriculture and back to the contemporary C3 forest. 

This method has been used extensively throughout the Maya lowlands (Beach et al. 2008; 

Fernandez et al. 2005; Johnson et al 2007; Johnson,Wright and Terry 2007; Sweetwood et al. 

2009; Webb et al. 2004, 2007; Wright, Terry, and Eberl 2009).  

The ancient maize agriculture predictive models presented herein were predicated on the 

results of stable C isotopes contained in the soil organic matter (SOM); therefore a brief 

explanation of the process of stable C isotope discrimination in plants and microbes is warranted. 
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Carbon 13 (13C) is a stable isotope, one of two naturally occurring stable isotopes of carbon 

(Farquhar 1989). Carbon dioxide (CO2) formed from 13C (13CO2) is chemically identical to CO2 

formed from 12C (12CO2) but is slightly heavier with a mass difference of 2.3% and is much less 

abundant in the atmosphere, making up roughly 1.1 atom percent (Evens and von Caemmerer 

1996; Farquhar, O’Leary and Berry 1982; Farquhar, Ehleringer and Hubick 1989). Plants 

isotopically discriminate against the already scarce 13CO2, making their composition of 13C lower 

than that of the atmosphere (Farquhar O’Leary and Berry 1982). Plant isotopic discrimination of 

carbon (δ13C) per mil (‰) is defined here as the ratio of 13C to 12C compared to that of the 

standard, Pee Dee Belemnite (PDB) (Cerling et al. 1997): 

(% δ13C = [(13C/ 12C) sample/ (13C/ 12C) PDB -1] X 1,000) 

PDB is a carbonate of the mollusk Belemnitella americana from the Pee Dee formation 

of South Carolina, USA (Noordwijk et al. 1997). It is important to note that although plants have 

a positive discrimination against the heavier 13CO2, the δ13C values are negative, because they 

are a comparison to the PDB standard (Farquhar Ehleringer and Hubick 1989). All plants do not 

discriminate against 13CO2 to the same degree. Plants that utilize the Hatch-Slack pathway (C4) 

for carbon reduction, discriminate less than those that use the Calvin Cycle (C3) (Cerling 1997; 

Farquhar, O’Leary and Berry 1982; Smith and Epstein 1971). Plants discriminate against 

atmospheric 13CO2 in multiple ways. First, in order to be taken up by the plant, CO2 must diffuse 

to the site of carboxylation (the initial C incorporation using a carboxyl group). The heavier 

13CO2 is slower to diffuse through the stomata openings, lowering the overall concentration of 

13CO2 within the plant (Evans and von Caemmerer 1996). Secondly, and more substantial is the 

biochemical discrimination that occurs during the interaction with the catalyst for carboxylation. 

C3 plants use ribulose-1, 5-bisphosphate carboxylase oxygenase (rubisco) as a catalyst. Rubisco 
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has a higher discrimination against the 13CO2 than that of the C4 pathway catalyst, 

phosphoenolpyruvate carboxylase (PEP carboxylase). Therefore, C3 plants have an overall δ13C 

of -20 to -30‰ with an average of -27‰ compared to that of the C4 plants with δ13C values of -

10 to -14‰ averaging -12‰ (Bender 1968; Cerling et al. 1997; Ehleringer 1991; Liu, Clapp and 

Cheng 1997). 

δ13C Signature From the Plant to the Soil 

Once 13C is incorporated into the plant, it can then be deposited into the soil as SOM by 

means of above ground decomposition (Rochette et al. 1999), below ground biomass (Amos and 

Walters 2006), and rhizodeposition (described below) (Amos and Walters 2006; Kuzyakov and 

Domanski 2000).  The primary source of soil organic C (SOC) is deposition by plants and their 

residues (Balesdent Wagner and Mariotti 1988; Kuzyakov and Domanski 2000). Plants export 

roughly 50% of the total C fixed by photosynthesis below ground (Nguyen 2003).  Rochette et 

al. (1999) in Quebec found that maize residue decomposition from above ground biomass 

contributed to the SOC and increased the overall soil δ13C by 2 to 7% in a 2 year period, 

compared to that of bare ground control plots. Bolinder et al. (1999) gives estimates for C 

incorporated from maize above ground and below ground biomass to the SOC at 7.7 to 20% and 

16 to 30%, respectively. Amos and Walters (2006) conducted a literature review on maize below 

ground biomass and net rhizodeposition of C into the SOC.  After reviewing 45 studies spanning 

the entire life cycle of maize from both the greenhouse and the field, they found that the typical 

physiologically mature maize plant has a root to shoot ratio of 0.16 with an average root biomass 

of 13.6g C plant-1 with a net root derived below ground C contribution of 29 ± 13% of the shoot 

biomass. Plant rhizodeposition is the process of organic compounds being released by the root 

into the environment (Nguyen 2003). Rhizodeposition continually contributes C into the SOC 
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accounting for 5-21% of all photosynthetically fixed carbon released into the soil (Marschner 

1995). Rhizodepositions can be grouped into four major mechanisms of input: 1) lysates 

(substances released from the cells, such as dead or dying cells), 2) exudates (passive compounds 

such as low molecular weight compounds that chemically diffuse from cells), 3) secretions 

(actively released compounds such as enzymes) and 4) gaseous compounds (CO2, ethane, 

terpene etc.) (Marschner 1995; Wichern 2007). Border cells function as both lysates and 

exudates, living a short period of time producing mucilage, independent of the root after being 

sloughed off the growing root cap. It was found that maize seedlings can have thousands of 

border cells at any given time with an estimated pulse of 0.1 grams of C into the rhizosphere 

when the seedlings grow from unsaturated to saturated soil strata conditions (Iijma et al. 2004). 

Border cells of maize vary, depending on growth conditions and soil medium and can contribute 

5-10% of total carbon from the plant deposited into the soil (IIjma Griffiths and Bengough 

2000). Carbon secretions and exudates can reach the soil in the form of sugars, organic acids, 

enzymes and other more complex molecules that sustain and repel the micro flora of the 

rhizosphere (Jaeger et al. 1999). All these and many other mechanisms move C (12C and 13C) 

from the plant to the soil, thus depositing the isotopic signature of the dominant vegetation of the 

region into the SOM.  

Once in the soils, the isotopic signature is preserved with minimal change to overall δ13C 

values, in most cases less than 2.5‰ (Agren, Bosatta, and Balesdent 1996, Baldesdent and 

Mariotti 1987, Boutton 1996, Cerling et al. 1997). The amount of time it takes to “create” an 

isotopic signature in the soil is not fully understood. However, soil composition and environment 

influence the amount of time needed for an isotopic signature to change.  For example, Vittorello 

et al. (1989) found that twelve years after a forest (C3 plants) was converted to sugar cane (C4), 
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90% of the carbon in the clay fraction still had the forest signature, demonstrating the ability of 

the clay to “protect” the isotopic signature. It also demonstrates that in the system, twelve years 

of continual cultivation was not sufficient to replace forest C3 signature.       

Interpretation of Stable C isotope signatures 

The SOM δ13C values can be used to distinguish the type of plant pathway that 

contributed to the C in the soil (Liu, Clapp and Cheng 1997). This identifiable isotopic 

discrimination variation is important because maize utilizes the C4 pathway while the dominant 

vegetation of the semi dry neotropical forests of the Tikal region use the C3 pathway. This 

distinction makes it possible to identify potential ancient maize agricultural sites. Furthermore, of 

all known plant species, it is estimated that only roughly 1% utilize the C4 pathway (Edwards 

and Walker 1983) making a false positive less likely. The soils laboratory at Brigham Young 

University has tested plant tissue of many of the modern forest species including grasses local to 

the Tikal region and as of yet, have not found any evidence of C4 plants in the dominant modern 

vegetation (Johnson et al. 2007, Wright et al. 2009, Webb et al. 2007, Burnett et al. 2010). 

Therefore, by means of isotopic signatures from the plant organic matter left in the soils, SOM 

distinctions can be inferred as to what vegetation was present throughout the soil profile.  

Additional lines of evidence for the shift from C3 forest to mixed C3/C4 vegetation 

associated with Maya agriculture have been reported.  Beach et al., (2008a) recently reviewed 

the literature on the ancient environment, climate, vegetative history, and periods of soil erosion 

and deposition in the Maya Lowlands.  The changes in vegetative history associated with forest 

clearance and the advances and declines in ancient maize agriculture that correspond to 

population dynamics are well documented.  Sedimentation studies of lakes in the Petén region of 
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Guatemala (Deevey et al., 1979; Rice, 1996; Rosenmeier et al., 2002; Brenner et al., 2003; Wahl 

et al., 2006), including lake Las Pozas about 5 km south of Aguateca (Johnston et al., 2001) and 

lake Tamarindito, approximately 5 km to the north (Dunning et al., 1998) revealed early to 

middle Holocene, organic-rich sediments with pollen from high forest taxa and low quantities of 

charcoal.  Forest pollen declined and the first maize pollen appeared about 4600 cal yr BP (2600 

BC). Charcoal, phosphorus and pollen of economic species are contained within a significant 

deposition layer of silicate clays that began to accumulate in the preclassic period about 3000 cal 

yr BP and continued through the classic (1000 cal yr BP). 

Non-Parametric Multiplicative Regression 

Non-parametric multiplicative regression (NPMR) is a method for statistical analysis that 

utilizes a local multiplicative smoothing function that applies a leave-one-out cross-validation to 

estimate a particular response variable (Berryman and McCune 2006). NPMR was used to create 

statistical models despite its main disadvantage of being a computationally intense multiplicative 

kernel smoother trial and error method for fit. Additionally, it lacks an equation in the results of 

the analysis for interpretation relating the response variables to the predictor variables (McCune 

2006).  However, NPMR offers a solution to representing species response surfaces within a 

multidimensional niche space, allowing predictors to covary in an intricate manner using 

multiplicative kernel smoothers, without the need to define the overall response form of the 

ecological sample space (McCune 2006). Multiplicative regression was chosen in order to better 

fit the complex interaction of the environmental variables that make up, in part, the ecological 

niche (as defined by Hutchinson 1957) associated with maize agriculture. The automatic 

multiplicative combination of the predictors can be used to account for interactions of 

unacceptable maize conditions that may not be accounted for using additive modeling techniques 
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(McCune & Mefford 2004; McCune 2006; Grundel & Pavlovic 2007). NPMR uses local model 

and a kernel function to create a final model form. The local model is used to select the shape of 

the function that will be used to fit a value in the space defined by the independent variables, for 

example: local mean, local linear regression or local logistic regression. The kernel (weighting 

function) is used to specify how the weight around each target point varies based on ecological 

distance, for example: uniform within a window or Gaussian. Multiplicative kernel smoothing 

allows all the predictors to interact (McCune 2009). The objective of this chapter is to combine 

NPMR, stable carbon isotopes, soil properties, and remote sensing data for predictive modeling 

of ancient maize agricultural areas surrounding Tikal. 

MATERIALS AND METHODS  

Sample Strategies 

The NPMR model study of the Tikal National Park was broken up into two sample areas: 

northwest (Bajos el Grande, Antonio and Tikal transects West and North) and the southeast 

(satellite settlements of Ramonal and Chalpate). Ramonal/Chalpate (hereafter referred to as 

Ramonal) samples were collected using a centric systematic area-sample method (CSS) that had 

been stratified by archaeologist Timothy Murtha using remotely sensed data layers (Webster 

2007, Burnett 2010, Burnett et al. nd a, nd b) (Figure 1). Further sample points were obtained 

throughout Tikal using spatial toposequence intervals along archeological transects and near 

structures (Burnett 2010). Systematic sampling was used over the preferred random sampling 

due to the length of the field season, the problematic nature of obtaining reliable GPS points 

under the closed canopy, and navigational difficulty due to dense local vegetation. The CSS 

method allowed for representation of the entire Ramonal area in a gridded fashion. It is assumed 
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that there is not periodic variation in the collected data allowing the data to be analyzed as 

random (Milne 1959). Milne (1959) using 50 enumerated (means and variances known) 

biological populations, found that there was no error introduced from CSS sampling if the data 

did not have periodic variation, allowing the data to be analyzed as random (Krebs 1999). 

In situ soil collection and laboratory analysis (Table 1) 

Soil profiles were collected from bucket auger cores, as well as from archaeological test 

pits throughout the study area. Leaf litter was removed from the soil surface and profile samples 

were acquired in 15cm increments. The collected samples were sealed in plastic bags until 

analysis was conducted at the Soils Laboratory, Brigham Young University. Upon arrival at the 

laboratory, samples were air dried, crushed and sieved to pass a 2mm (10mesh) sieve. The pH 

was assessed on the A and buried A horizons using a glass electrode with a 1:2 soil water 

mixture. Phosphorus (P) and potassium (K) levels of all A horizons were based on extraction 

using the Olsen sodium bicarbonate method (Olsen et al. 1954; Wantanbe and Olsen 1965). 

Carbonate C content (%) of each horizon was determined by titration as outlined by the United 

States Salinity Laboratory Staff (1954). Total Carbon and Nitrogen were calculated with an 

elemental analyzer using dry combustion (Costech EA, Valencia, CA). 

Five gram sub-samples were further ground to pass a 250 um (60 mesh) sieve prior to 

removal of carbonates and humic and fulvic acid fractions as outlined by Webb et al. (2004, 

2007, 2010) and Wright et al. (2009). Stable C isotope ratios of the remaining humin fraction 

were determined using a Thermo Finnigan isotope ratio mass spectrometer (Waltham, MA) 

coupled with a Costech elemental analyzer (EAIRMS). In order to compare multiple soil 

profiles, the largest shift in δ13C between the surface horizon and subsurface horizons within 
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each profile was reported as the δ13C enrichment (δ13C enrichment = δ13Cdepth - δ
13Csurface). 

Enrichment as defined herein is consistent with ∆13C, reported by Martinelli et al. (1996). 

However, the ∆ symbol is often used in reference to the positive plant discrimination rather than 

the comparison with the PDB standard (Farquhar, Ehleringer and Hubick 1989). To avoid 

confusion, it will simply be referred to as δ13C enrichment. A more in depth review of the soil 

analysis methods and listings of the data can be found in Burnett (2010) and in Burnett et al. (nd 

a; nd b). 

Remote Sensing and GIS Layers (Table 2) 

Remotely sensed (RS) and GIS data correction, extraction, and interpretation were 

conducted in the Geospatial Habitat Analysis Laboratory, Brigham Young University. All RS 

and GIS data were projected into WGS 1984 UTM zone 16N before any corrections or 

combinations were performed.  Landsat 7 Enhanced Thematic Mapper Plus (Landsat7) imagery 

was acquired at no cost from the U.S Geological Survey (USGS) (http://www.usgs.gov/). Dry 

season (February-May) imagery was used in order to observe the greatest disparity of plant stress 

as well as to obtain imagery with the lowest percent cloud cover. Landsat7 bands 10-70 (1-7) 

reflectance values were included in the model and have spatial resolutions of roughly 30m for 

bands 1-5 and 7, 60m resolution for band 61, and 120m for band 62 (Table 3) (Jensen 2005; JPL 

2009; Mladinich 2006). Although Landsat7 imagery was georeferenced and some basic 

preprocessing had been done by the USGS, further preprocessing was conducted to enhance 

model performance. To reduce effects of atmospheric distortion, dark object subtraction was 

implemented using the ©Envi software general utilities (dark subtract tool). To fill in any missing 

data as well as ensure compatibility of the bands with model output cell size, all bands were 

resampled to 5m using the nearest neighbor method with ©ESRI ArcMap 9.3 (ArcMap) software 
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(this resampling does not improve the resolution). After preprocessing was completed, 

reflectance values were extracted from each band using the ArcMap extraction tool. Relative 

elevation data was extracted from a 5m resolution Airborne Synthetic Aperture Radar (AIRSAR) 

derived digital elevation model (DEM). AIRSAR was flown over the study area in March of 

2004 by the Jet Propulsion Laboratory (JPL 2009). The DEM was created using the C-band 

(0.057 meter wavelength) and was obtained from the Alaska Satellite Facility at no cost. 

Preprocessing of the DEM was conducted using ArcMap and included the filling of missing data 

and removal of small imperfections using the hydrology tool (fill).The AIRSAR DEM was also 

used along with the ArcMap extension Benthic Terrain Modeler (BTM) created by NOAA 

Costal Service Center to create a Topographic Position Index (TPI), as well as a rugosity index 

(Wright 2005). Rugosity indices and TPIs were generated to separate out valley bottoms such as 

bajos and flat landforms on hill tops from mid elevation slopes, reducing the influence of the 

elevation data on the model. The Iverson et al. (1997) Integrated Moisture Index model (IMI) 

was created using ArcMap to asses topographically influenced moisture availability using the 

DEM derived layers hillshade, flow accumulation and curvature. The hillshade and the curvature 

layers were created with the surface analysis tools (hillshade and curvature). The flow 

accumulation was derived with the hydrology tools (flow direction and flow accumulation). The 

curvature layer values were inverted and the all layers were normalized and reclassified on a 

scale of 0-100. The reclassified layers were than combined in a weighted fashion to create an 

IMI: (IMI= (hillshade x 0.5) + (curvature x 0.15) + (flow accumulation x 0.35) with a 0-100 

scale, zero indicating no moisture retention 100 representing the maximum moisture retention 

(Davis 2009).  The AIRSAR DEM was further used to create stand alone layers for slope, aspect, 

curvature and curvature direction of slope. Slope is a calculation of maximum rate of change in 
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elevation between the cell and its eight neighbors. Aspect is the direction of the slope. Curvature 

how the slope flows was used to identify the physical characteristics defining drainage basins 

often used to understand erosion and runoff processes. Curvature direction of slope is the 

direction of the maximum slope.  

AIRSAR stand alone layers in the model were from the p-band (0.68 m) and included the 

hh, hhvv and hv polarization combinations (see Table 2). IKONOS imagery was obtained from 

the Earthworks at Tikal Project. The IKONOS-2 satellite imagery was obtained during the dry 

season in March of 2001. The bands used were red, green, blue and near-infrared. The resolution 

was 1m. All IKONOS bands were resized using nearest neighbor to 5 m in ArcMap. Due to the 

extent of the IKONOS coverage available, it was only used on models specific to the Ramonal 

area. However, none of the bands were found to be statistically relevant in the models.  

Model Analysis 

All NPMR modeling was done with ©HyperNiche version 1.12 software (McCune and 

Mefford 2004). Hyperniche was used because it has built in controls for over-fitting the data. 

Over-fitting is controlled simultaneously by using cross validation when fitting the model, 

minimum average neighborhood size for analysis, and parsimony control using previously listed 

controls along with adjustable improvement criterion and data predictor ratio (McCune 2009). 

All NPMR models used a local mean model with a Gausian Kernel for the overall model form. 

Each model created used a single response variable (enrichment or Carbonate C) and multiple 

predictor variables generated by RS, GIS, and lab data (elevation, reflectance, ph, etc.). 

Responses varied between quantitative data on a gradient and presence absence data represented 

as binomial. The models were created using a free search for the best fit model in a stepwise 
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fashion. Stepwise works by starting with a one variable model, then adding additional variables 

based on improvement criteria. The newly created models were assessed in a forward and 

backward manner allowing reassessment of all variables already in the model each time a new 

variable was added or taken out. The result of the free search was the model with the best subset 

of predictor variables defined by either a log β (binomial) or an xR2 (quantitative) value (defined 

below). For each best fit model, a GIS raster grid representation was created for visual as well as 

statistical analysis using HyperNiche and ArcMap software packages.   

Binomial 

Two model types were run using binomial data sets, both of which used enrichment as 

the response variable and all the GIS/RS layers as predictor variables. One included only the 

samples collected in the southeast part of the study area (Ramonal Binomial RS (13C Enrich.). 

The other included all samples (Tikal Total Binomial RS (13C Enrich.). On all models that were 

based on presence and absence (enrichment value > 2.5), log base 10 of Bayes factor (log β) was 

used to assess the outcome of the model. The log β uses the Bayseian approach to hypothesis 

testing developed by Jeffreys (1935,1961). Kass and Reftery (1995) define the Bayes factor as 

“…a summary of evidence provided by the data in favor of one scientific theory, represented by 

a statistical model, as opposed to another.” The log β here differs from the true Bayes factor in 

that the model is not an assessment of improvement from model 1 to the previous model 2; it is 

an assessment of each model over a naïve model. The naïve model in this case is the probability 

of encountering maize in the study area based on average frequency of maize presence within the 

in situ data (McCune 2006). The scale for log β interpretation that was incorporated in this study 

was suggested by Jefferys (1961) and outlined as follows by Kass and Reftery (1995):  
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0 to 0.5            = “not worth more than a bare mention” 

0.5 to 1.0        = “Substantial” 

1 to 2.0            = “strong” 

Greater than 2 = “Decisive” 

Once the best fit model for the provided predictor variables was found, a Monte Carlo 

Test was run. The test was done to evaluate if the variables selected by the NPMR method were 

a better fit than that of a random selection including the same number of predictor variables from 

the total available predictors. After the Monte Carlo test, individual predictor variables within the 

selected model were further assessed as to the relative influence on the model or “importance”. 

This influence was accomplished using a sensitivity test:  

Sensitivity = (mean difference in response/ range in response)/(difference in predictor/ range in 

predictor)  

Sensitivity was used because there were no fixed coefficients or slopes to compare to when using 

non-parametric regression (McCune 2006). The predictor variables’ values were nudged one at a 

time by plus or minus five percent. The difference seen in the response variables (mean absolute 

difference) was used to interpret the effect of the nudge (McCune 2004). The more influence a 

variable has, the more the nudge affects the overall model outcome. Further assessment was 

conducted using 2 and 3D response curves created to visualize the correlations of the predictor 

variables and the response variable, soil enrichment. The overall accuracy of each model was 

based on the comparison to the naïve model.  
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Quantitative Response 

Four enrichment models: (Ramonal Lab Only (13C Enrich.), Ramonal RS Only (13C 

Enrich.), Ramonal RS and Lab (13C Enrich.), Tikal Total RS (13C Enrich.) and four carbonate C 

models: (Ramonal Lab Only (CO3
=-C), Ramonal RS Only (CO3

=-C), Ramonal RS and lab 

(CO3
=-C), and Tikal Total RS (CO3

=-C), were run in a quantitative manner. The enrichment data 

were run both quantitatively and binomially. However, the carbonate C model was only run 

quantitatively. Models were evaluated using a cross R2 value (xR2), defined as the size of the 

residual sum of squares in relationship to the total sum of squares (Antoine and McCune 2004). 

xR2 produces a more conservative estimate from that of the traditional R2 because xR2 excludes 

each data point from the basis for the estimate of the response at that given point. With this 

method, weak models can have residual sum of squares that can exceed the total sum of squares, 

producing an overall negative xR2 (poor fit) to an xR2 of 1 (perfect fit). Coefficients in a fixed 

equation are not used in NPMR; the standard deviations from the Gaussuan smoothers 

(tolerances) are used instead (Berryman and McCune 2006, McCune 2009).  

RESULTS AND DISCUSSION  

13C Enrichment Binomial RS Model 

The best fit model for 13C enrichment within soil profiles using the Tikal Total Binomial 

RS (13C Enrich.) data had a log β value of 7.18 (Table 4) (Figure 5) and is considered a decisive 

model (see scale above). The results from the Monte Carlo test produced no randomly created 

models that were equal to or better than the best fit with a p-value of < 0.05. Of the 20 predictor 

variables, 5 were considered statistically relevant in the best fit model. The sensitivity test was 

used to create the final predictor variable order based on relative influence after more than 300 

nudges. The predictor variable order is as follows (sensitivity values and tolerances listed in 
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parenthesis respectively): elevation (1.26, 3.58), curvature direction of slope (0.300, 2.79), 

Landsat band 50 (0.25, 3.8), Landsat band 40 (0.10, 5.25) and aspect (0.05, 249.77). The model’s 

overall accuracy was an improvement of 72.7% over the naïve model.  

The best fit model for C isotope enrichment using the Ramonal Binomial RS (13C 

Enrich.) data had a log β of 4.36 and is also considered decisive. However, with less data points 

(due to the smaller sampling area) used in the model, the outcome not only differed in the log β 

value from that of the model listed above but it also differed in predictor variable relevance 

despite the fact that the same predictor variables were used. The Monte Carlo test revealed no 

randomly generated models equal to or better than the best fit model with a p value < 0.05. Only 

3 of the 20 variables were considered statistically relevant: elevation (0.89, 4.23), slope (0.60, 

2.41), and curvature direction of slope (0.26, 2.72). The models overall accuracy was an 

improvement of 73.3% over the naïve model.  

Quantitative Models of δ13C Enrichment 

The best fit model for δ13C enrichment within soil profiles using only soils laboratory 

data (Ramonal Lab Only (13C Enrich.)) (Table 4) (Figure 3) was restricted to the southeast 

sample area (98 profiles at Ramonal) and had an xR2 of 0.583 with four of seven predictor 

variables statistically relevant. A Monte Carlo test was unable to determine any randomly 

generated models equal to or better than the best fit model with a p value < 0.05. Sensitivity 

analysis revealed the following order of the laboratory data predictor variables: phosphorus 

content (0.76, 0.67), profile depth (0.39, 16.35), carbonate C (0.07, 4.67), and pH (0.03, 1.14). 

Although this model is fairly strong statistically, it is only slightly more cost effective than field 

collected data, eliminating only the final steps of the laboratory procedure, to obtain actual δ13C 
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values. All samples still must be collected in the field. In contrast, the model for the Ramonal 

area using only RS derived data (Ramonal RS Only (13C Enrich.)) (Figure 4) had a statistically 

weaker xR2 of 0.215 and a Monte Carlo test that found of the 100 runs, 20 produced randomly 

generated models equal to or better than the best fit model. However, all the predictor variables 

were obtained or generated from RS platforms. The total number of relevant predictor variables 

for the RS model was 6 of 25: elevation (1.16, 2.59), curvature direction of slope (0.28, 2.59), 

AIRSAR P band vv (0.15, .03), aspect (0.04, 226.61), Landsat band 4 (0.02, 8.25), and TPI fine 

scale (0.01, 358.5). The best fit for the isotopic enrichment data using both lab and RS predictors 

(Ramonal RS and Lab (13C Enrich.)) had an xR2 of 0.592, improving slightly the model over the 

laboratory only model. There were 6 of 32 predictor variables that were statistically relevant in 

the Ramonal lab data model: phosphorus (0.72, 0.67), profile depth (0.43, 17.44), carbonate C 

(0.06, 4.96), AIRSAR p band hhvv (0.03, 187.04), pH (0.03, 1.44), and rugged index (0.02, 

0.05). The laboratory data predictors far outweigh the RS predictor variables in statistical 

significance.  

The final quantitative model for isotopic enrichment included all 169 profiles covering 

both the southeast and northwest profiles (Tikal Total RS (13C Enrich.). This model only used 

RS predictor variables. The xR2 value was 0.305 with an improvement over Ramonal RS Only 

(13C Enrich.) xR2 by 0.09 with 5 relevant predictor variables: elevation (1.35, 2.86) Landsat band 

50 (0.36, 2.47), TPI fine scale (0.13, 76.44), AIRSAR p band hv (0.04, 0.03), and curvature 

direction of slope (0.01, 13.19). A Monte Carlo test was unable to find any randomly generated 

models equal to or better than the best fit model with a p value < 0.05. Both the Ramonal RS 

Only (13C Enrich.) and the Tikal Total RS (13C Enrich.) models had elevation as the most 

significant variable. In addition, they both included TPI fine scale and curvature direction of 
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slope. However, they differed in that the Landsat band was included in the model as well as the 

AIRSAR band. In the Ramonal RS Only (13C Enrich.) model, the fifth predictor variable was 

Landsat band 40 (near-infrared) and the AIRSAR P band vv (vertical sent vertical received) was 

the third. In the Tikal Total RS (13C Enrich.), the second variable was Landsat band 50 (Mid-

infrared) and the AIRSAR band PHV (horizontal sent vertical received) was fourth. Both 

Landsat bands are sensitive to vegetation health and are present in the binomial model. More 

points need to be taken to elucidate better the most relevant Landsat and AIRSAR bands to the 

model.  

Carbonate C 

The best fit model for carbonate C content using only soils lab data (Ramonal lab only 

(CO3=- C)) was restricted to the southeast sample area (98 profiles) and had an xR2 of 0.76 with 

4 predictor variables statistically relevant out of 6. A Monte Carlo test was unable to find any 

randomly generated models equal to or better than the best fit model with a p value < 0.05. 

Sensitivity analysis revealed the following order of the predictor variables: pH (1.50, 0.13). ppm 

phosphorus (0.34, 1.33), % organic C (0.15, 4.21), and % total nitrogen (N) (0.03, 0.71). As with 

the enrichment laboratory model (Ramonal Lab Only (13C Enrich.)), although the predictions are 

strong they are restricted to only lab collected data and therefore, actual carbonate C values can 

be determined directly. The model for the same area using only RS derived data (Ramonal RS 

Only (CO3=- C)) had a statistically weaker xR2 of 0.387. However, all the predictor variables 

were obtained or generated from RS platforms and the model is an improvement over the 

enrichment RS model with a Monte Carlo test unable to find any randomly generated models 

equal to or better than the best fit model with a p value < 0.05. The total number of relevant 

predictor variables was 5 of 25: elevation (1.48, 2.59), Landsat band 1 (0.38, 1.80), curvature 
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direction of slope (0.30, 2.59), Landsat band 7 (0.04, 4.50), and TPI broad scale (0.03, 257.95). 

Similar to the enrichment models, combination of the lab and the RS layers led to little or no 

improvement. The Ramonal RS and lab (CO3=- C) model with an xR2 value of 0.747 did not 

improve over the Ramonal lab only (CO3=- C) model. The total number of relevant predictor 

variables for the Ramonal RS and lab (CO3=- C) model was 7 of 31: pH (1.36, 0.13), elevation 

(0.24, 10.37) curvature (0.08, 4.60), Iverson Moisture Index (0.29, 22.79) AIRSAR P band phh 

(0.25, 0.09), % organic C (0.22, 11.58) and curvature direction of slope (0.01, 8.41). A Monte 

Carlo test was unable to find any randomly generated models equal to or better than the best fit 

model with a p value < 0.05. Unlike the enrichment models, the Ramonal RS and lab (CO3=- C) 

model predictor variables were not dominated by the laboratory variables and were made up of 5 

RS variables and only 2 laboratory variables. The total study area model for % carbonate C had 

xR2 of 0.335 and used only RS derived layers (Tikal Total RS (CO3=- C). This model included 

the most predictor variables in the final model with 10 of the 20 used: elevation (1.20, 3.58) 

curvature direction of slope (.41, 2.79), Landsat band 4 (0.12, 4.50), Landsat band 61 (0.12, 

1.25), Landsat band 2 (0.12, 3.00), aspect (0.11, 160.56), Landsat band 3(0.06, 4.20), AIRSAR P 

band phv (0.05, 0.03), slope (0.05, 15.21), and Landsat band 1 (0.05, 6.00). Of all the % 

carbonate C models Tikal Total RS (CO3=- C) has the most potential in both predicting poor 

maize presence and possible human structure location.  

Estimation of Long Term Maize Agricultural Potential by Scale 

Using the AIRSAR data frame available, the maize potential can be classified and 

quantified for food production and sustainability studies. Due to the difficulty of defining the 

political boundaries of the Tikal sustaining area, maize agricultural potential was calculated for 

the available AIRSAR data frame and for concentric circles at 1 km-radius intervals out to 4 km, 
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centered on Temple 1 (Figure 8 and Table 5). Calculations only included the areas that were 

modeled by the Tikal Total Binomial RS (13C Enrich.) model (Table 5). Within 1 and 2km radii, 

the model predicted less than 3% and 9%, respectively, of the area as medium to high potential 

for long term maize agriculture. Within 3 and 4km radii, the model predicted approximately 20% 

and 21%, respectively, of the area as medium to high potential for long term maize agriculture. 

For the total AIRSAR data frame (Figure 5), the model predicted less than 31% of the area as 

medium to high potential for long term maize agriculture. This means that the area of prime 

maize agriculture was located beyond 3 km of the site center. And much of this production was 

on flat, depressions and bajo edges. It is likely that other types of agriculture took place on the 

shallow backslopes and shaded areas beneath the forest canopy closer to the site center.   

Conclusions  

The use of RS layers will prove more valuable in predicting carbonate C which has an 

inverse relationship to potential maize locations. This also may be valuable in predicting 

architectural structures located beneath the canopy. The models presented here suggest that many 

areas were left forested or cleared for short periods of time. However, they also show areas with 

very high enrichment near the bajo edges and around some of the structures, suggesting long 

term maize agricultural practices existed where they could be sustained, such as house gardens 

and or highly favorable soil close to surface water.  

An alternative hypothesis could be that deposition of eroded upland soils carried isotopic 

signatures of ancient C4 vegetation to the bajo edges.  Burnett et al. (2010) reported evidence of 

deposition of the “Maya clay” and of buried A horizons in some Tikal soil profiles. Beach et al. 

(2006; Beach 1998)  reported a significant deposition layer of approximately 50 cm of “Maya 
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clay” across the bajos of the Petexbatun region of Guatemala and of northern Belize that resulted 

from preclassic and classic maya agriculture and soil erosion in the uplands.  However, Johnson 

et al. (2007) examined profiles from both perennial and seasonal wetlands at the foot of the 

Aguateca escarpment in the Petexbatun region. Three soil profiles exhibited approximately 40-

cm thick layers of “Maya clay” above buried A horizons. Carbon isotopic evidence of ancient C4 

plants including maize agriculture was only found in the seasonal wetland soil that was 

sufficiently drained in the dry season for maize production.  Profiles affected by Maya clay in the 

perennial wetland did not exhibit evidence of ancient C4 plant growth. The permanently flooded 

perennial wetland profiles would not have been conducive to maize growth. Johnson et al. (2007) 

suggested that the C isotope signatures of ancient C4 vegetation was the product of in place C4 

plant growth and rhizodeposition and not the result of deposition of eroded soils.   

Indirect evidence for maize agriculture at the site of Ramonal can be found in the 

presence of Orbigyna cohune (Mart), Dahlgren ex Standl (cohune palm) in the deep foot and 

toeslope soils. The presence of this palm is often used by local farmers as an indicator of well 

drained nutrient soil for maize agriculture. Indirect and direct food potential in the forests and 

large areas not showing medium to high C4 δ
13C enrichment (C3 forest and strong C4 δ

13C 

signatures of maize are mutually exclusive) suggest that an assortment of food production 

methods were used ranging from silviculture to long and short term maize agriculture. The 

findings here support  that the Tikal Maya created mosaics (Ford 2008) and utilized diverse 

methods of food production (Ford, Clarke, and Raines 2009; Whitmore and Turner 2001). 
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(Figure 1)Ramonal sample points based on a centric systematic area-sample method (CSS) that had 

been stratified by archaeologist Timothy Murtha using remotely sensed data layers. 
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Lab Predictor variables Description 

Depth cm Soil depth to marl or bedrock layer or a 
maximum of 1 m. 

 

pH Assessed on the A and buried A horizons 
using a glass electrode with a 1:2 soil water 
mixture 

Phosphorus, mg/kg Run on all A horizons, based on the Olsen 
bicarbonate extraction. 

Potassium, mg/kg Run on all A horizons, based on the Olsen 
bicarbonate extraction.  

Carbonate C, Percent Calcium carbonate equivalent determined 
by titration (United States Salinity 
Laboratory Staff, 1954) and converted to 
percent carbonate C 

Total Nitrogen, Percent Calculated with an elemental analyzer using 
dry combustion. 

 

Organic C, Percent Calculated with an elemental analyzer using 
dry combustion. 

(Table 1)Predictor variables generated in the laboratory used in model creation. All laboratory 
data came from the Soils Analysis Laboratory Brigham Young University.  
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Remote Sensing & GIS  Predictor 
Variables   Description 

Sensor data was 
Derived from 

Resolution Before Resized 
to 5 m 

Relative Elevation  
Digital elevation model (DEM) derived with 
the C band with Z values representing 
elevations.   

AIRSAR 5 m 

Slope 

Slope assessed at 5 m intervals created from 
the DEM . Slope is a calculation of maximum 
rate of change in elevation between the cell 
and its eight neighbors.  

AIRSAR 5 m 

Aspect 
Aspect assessed at 5 m intervals created from 
the DEM. Aspect is the direction of the slope 

AIRSAR 5 m 

Landsat band 1 See Landsat7 table. Landsat7 30m 

Landsat band 2 See Landsat7 table. Landsat7 30m 

Landsat band 3 See Landsat7 table. Landsat7 30m 

Landsat band 4 See Landsat7 table. Landsat7 30m 

Landsat band 5 See Landsat7 table. Landsat7 30m 

Landsat band 61 See Landsat7 table. Landsat7 60m 

Landsat band 62 See Landsat7 table. Landsat7 120m 

Landsat band 7 See Landsat7 table. Landsat7 30m 

Ikonos R red reflectance. IKONOS-2 1m 

Ikonos G green reflectance. IKONOS-2 1m 

Ikonos B blue reflectance. IKONOS-2 1m 

Ikonos NIR Near- infrared reflectance.  IKONOS-2 1m 

AIRSAR band P hh 
P band antenna radiation polarized and 
transmitted horizontally and restricted to 
receive horizontally polarized radiation. 

AIRSAR 5m 

AIRSAR band P vv 
P band antenna radiation polarized and 
transmitted horizontally and restricted to 
receive vertically polarized radiation. 

AIRSAR 5m 

AIRSAR band P hv 
P band antenna radiation polarized and 
transmitted vertically and restricted to  receive 
vertical polarized radiation. 

AIRSAR 5m 

AIRSAR band P hhvv P band channel combing HH and VV. AIRSAR 5m 

Rugged Index 
The ratio of surface area to planar area  
derived from a DEM 

AIRSAR 5m 

Topographic Position Index  
Broad Scale  

Location is compared to overall landscape, for 
example a hill top vs. a valley bottom (200 m 
radius) derived from a DEM 

AIRSAR 5m 

Topographic Position Index   
Fine Scale 

Location is compared to overall landscape, for 
example a hill top vs. a valley bottom (20 m 
radius) derived from a DEM 

AIRSAR 5m 

Curvature 

Curvature derived from a DEM was used to 
identify the physical characteristics defining 
drainage basins often used to understand 
erosion and runoff processes. 

AIRSAR 5m 

Curvature Direction of Slope 
The direction of the maximum slope derived 
from a DEM 

AIRSAR 5m 

Iverson Moisture Index  

Used to asses topographically influenced 
moisture availability using the DEM derived 
layers hillshade, flow accumulation and 
curvature. 

AIRSAR 5m 

(Table 2) Predictor variables generated in using GIS and remotely sensed data. All remotely sensed 
data was further preprocessed in the Geospatial Habitat Analysis Laboratory Brigham Young 
University.  
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Landsat 7 ETM + 

Band 
Number 

Spectral 
Range  

(μm) 

Spatial Resolution at 
Nadir 

(m) 

Band Characteristic 

10 0.45-0.52 30 x 30 (Blue-green) Water penetration and vegetation 
soil discrimination. Highly susceptible to 
Rayleigh scattering 

20 0.52-0.60 30 x 30 (Green) Vegetation discrimination and plant 
vigor 

30 0.63-0.69 30 x 30 (Red) Vegetation type, bare ground and roads. 
Within the spectra of Chlorophyll absorption  

40 0.76-0.90 30 x 30 (Near-infrared) Water bodies , Soil moisture, 
vegetation biomass and crop identification 

50 1.55-1.75 30 x 30 (Mid-infrared) Discriminates roads, bare soil, 
water bodies and vegetation type and water 
content. Band 5 is efficient at penetrating 
atmospheric haze 

60 

62 

10.40-12.56 60 x 60 (Thermal-infrared) Sensitive to infrared radiant 
energy emitted to obtain temperature from 
target. Used for thermal mapping plant stress 
and soil moisture. Band 60 is taken in high gain 
band 62 is low gain. 

70 2.08-2.35 30 x 30 (Mid-infrared) Vegetation cover, soil moisture 
and mineral and rock type.  

80 .520-.900 15 x 15 (Black and White) Panchromatic band for image 
resolution enhancing. Band 8 was not utilized in 
this study 

(Table 3) Landsat general band characteristics.  
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Model Name  xR2
  log β  Response Variable Predictor variables included in final model 

(sensitivity, tolerance) 

Ramonal Lab Only (13C Enrich.) 
0.583  ‐  δ13C enrichment 

ppm phosphorus (0.76, 0.67), depth (0.39, 16.35), % 
carbonate (0.07, 4.67) and pH (0.03, 1.14) 

Ramonal RS Only (13C Enrich.) 

0.215  ‐  δ13C enrichment 

elevation (1.16, 2.59), curvature direction of slope (0.28, 
2.59), AIRSAR band P vv (0.15, .03), aspect (0.04, 226.61), 
Landsat band 4 (0.02, 8.25), and TPI fine scale (0.01, 358.5). 

Ramonal RS and Lab (13C Enrich.) 

0.592  ‐  δ13C enrichment 

ppm phosphorus (0.72, 0.67), depth (0.43, 17.44), % 
carbonate (0.06, 4.96), AIRSAR P band hhvv (0.03, 187.04), 
pH (0.03, 1.44), and rugged index (0.02, 0.05).  

Ramonal Lab Only (CO3
=
‐C) 

0.76  ‐   CO3
=
‐C 

pH (1.50, 0.13). ppm phosphorus (0.34, 1.33), % organic C 
(0.15, 4.21), and % total nitrogen (N) (0.03, 0.71)  

Ramonal RS Only (CO3
=
‐C) 

0.387  ‐   CO3
=
‐C 

elevation (1.48, 2.59), Landsat band 1 (0.38, 1.80), curvature 
direction of slope (0.30, 2.59), Landsat band 7 (0.04, 4.50), 
and TPI broad scale (0.03, 257.95). 

Ramonal RS and lab (CO3
=
‐C) 

0.747  ‐   CO3
=
‐C 

pH (1.36, 0.13), elevation (0.24, 10.37) curvature (0.08, 
4.60), Iverson Moisture Index (0.29, 22.79) AIRSAR P band 
phh (0.25, 0.09), % organic C (0.22, 11.58) and curvature 
direction of slope (0.01, 8.41) 

Tikal Total RS (13C Enrich.) 

0.305  ‐  δ13C enrichment 

elevation (1.35, 2.86) Landsat band 50 (0.36, 2.47), TPI fine 
scale (0.13, 76.44), AIRSAR P band hv (0.04, 0.03), and 
curvature direction of slope (0.01, 13.19) 

Tikal Total Binomial RS (13C Enrich.) 

‐  7.18  δ13C enrichment 

elevation (1.26, 3.58), curvature direction of slope (0.300, 
2.79), Landsat band 50 (0.25, 3.8), Landsat band 40 (0.10, 
5.25) and aspect (0.05, 249.77) 

Ramonal Binomial RS (13C Enrich.) 
‐  4.359  δ13C enrichment 

elevation (0.89, 4.23), slope (0.60, 2.41), and curvature 
direction of slope (0.26, 2.72). 

Tikal Total RS (CO3
=
‐C) 

0.335  ‐   CO3
=
‐C 

elevation (1.20, 3.58) curvature direction of slope (.41, 2.79), 
Landsat band 4 (0.12, 4.50), Landsat band 61 (0.12, 1.25), 
Landsat band 2 (0.12, 3.00), aspect (0.11, 160.56), Landsat 
band 3(0.06, 4.20), AIRSAR P band phv (0.05, 0.03), slope 
(0.05, 15.21),Landsat band 1 (0.05, 6.00) 

(Table 4) Model lists with corresponding xR2 and log β values. The predictor variables are listed in 
order of statistical relevance with the sensitivity and tolerance values in parentheses.  
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(Figure 2)Ramonal enrichment values are δ13C enrichment defined as the largest shift in δ13C from 
the surface to depth within the profile. Structure locations are included for reference.  
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(Figure 3) Ramonal enrichment values are δ13C enrichment predicted with the Ramonal Lab Only 
(13C Enrich.) model. Structure locations are included for reference.  
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(Figure 4) Ramonal enrichment values are δ13C enrichment predicted with the Ramonal RS and 
Lab (13C Enrich.) model. Structure locations are included for reference.  
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(Figure 5) Tikal Total Binomial RS (13C Enrich.) model with a log β value of 7.18. Areas labeled Bajo and No model have insufficient 
evidence to predict to avoid over fitting the data. Ramonal is in the south east corner of the map.Ramonal is in the southeast corner Tikal 
is in the center. 
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(Figure 6) Tikal Total RS (CO3
=-C) model the brown and dark blue are areas the model was unable to predict due to insuficient 

information. The dark blue is Bajo, and the brown in the highest elevations. Ramonal is in the south east corner of the map.Ramonal is in 
the southeast corner Tikal is in the center. 
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(Figure 7) Combination of Tikal Total RS (CO3
=-C) and Tikal Total Binomial RS (13C Enrich.) models showing only the medium and 

high probabilities of both. The dark blue is Bajo, and the brown in the highest elevations. Ramonal is in the south east corner of the 
map.Ramonal is in the southeast corner Tikal is in the center. 
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(Figure 8 ) Tikal site center scale Tikal Total Binomial RS (13C Enrich.) model.   
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Percent of Model  

Radius  None  Low  Medium  High 

1km  72.38  24.71  2.72  0.19 

2km  61.76  29.34  5.93  2.97 

3km  46.32  34.67  8.72  10.29 

4km  44.05  35.43  9.66  10.87 

Total frame  35.87  33.44  18.14  12.54 

(Table 5) Percent of area modeled within concentric circles using the Tikal Total Binomial RS (13C 
Enrich.) model 
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Appendix Table.  The response variables and remotely sensed predictors used in the NPMR models.
   Response variables   Predictors

Profile Binomial Change in Ruggedness Topo postion index Slope direction                        Ikonos Bands                                                     Landsat Bands March 2003                                                        AIRSAR polarized p-Band        
Number 13C enrich 13C CO3

=-C Elevation Slope Aspect Index Broad Fine Curvature Curvature R G B NDVI B1 B2 B3 B4 B5 B61 B62 B7 phh phhvv phv pvv
‰ % m (msl) % degrees

1 1 3.56 5.35 276.5 9.53 107.65 1.027 91 139 7.744 -6.590 80 84 83 78 99 72 58 79 68 144 72 31 0.018 87.017 0.019 0.040
2 0 1.37 1.19 252.8 0.00 -1.00 1.000 -25 -19 0.000 0.000 175 167 148 177 96 71 57 83 68 143 71 31 0.026 153.209 0.006 0.077
3 0 0.32 4.56 258.6 7.17 312.01 1.009 91 -19 1.310 -0.986 104 112 104 131 96 69 55 76 62 143 69 29 0.037 148.488 0.010 0.028
4 0 0.50 6.67 256.3 3.60 196.12 1.004 91 -19 2.016 -0.134 109 114 108 133 96 69 54 80 63 143 69 31 0.049 300.521 0.006 0.017
5 0 1.31 0.22 253.9 7.19 163.78 1.008 -25 -19 -0.225 -0.228 125 127 119 172 97 71 56 81 64 144 71 31 0.070 179.105 0.019 0.024
6 0 0.80 7.30 259.1 5.33 334.64 1.011 -25 -19 -2.823 1.236 144 154 150 171 96 71 56 79 63 143 71 29 0.050 103.943 0.014 0.042
7 1 2.52 0.87 253.3 8.87 337.12 1.013 -25 -19 -1.009 1.372 133 139 127 184 96 68 56 77 65 143 68 29 0.045 236.691 0.006 0.103
8 0 0.47 8.44 264.2 3.13 267.62 1.004 -25 -19 -3.330 2.961 109 123 102 157 95 70 54 77 64 142 70 31 0.028 111.890 0.012 0.103
9 0 0.60 9.83 260.2 11.59 238.65 1.028 91 139 8.076 -3.678 30 37 34 35 97 69 58 81 67 143 69 31 0.059 312.545 0.009 0.024
10 0 0.60 7.63 268.1 8.49 294.25 1.015 -25 -19 0.031 2.086 137 144 132 187 96 69 57 78 63 143 69 30 0.105 126.819 0.013 0.051
11 0 0.35 7.76 264.0 3.66 54.31 1.009 -25 -19 -5.721 1.976 128 137 130 122 97 70 53 75 63 143 70 29 0.027 178.996 0.003 0.016
12 0 0.88 9.80 277.1 14.71 317.52 1.040 -25 -19 -4.314 3.311 148 153 154 96 99 70 57 75 59 143 70 28 0.040 47.380 0.013 0.075
13 0 0.68 7.66 271.0 17.20 273.49 1.050 -25 -19 -1.393 1.590 125 134 125 150 98 73 56 81 66 145 73 29 0.030 91.530 0.017 0.069
14 0 0.06 9.08 273.7 18.42 350.58 1.064 -25 -19 -5.040 5.947 101 109 108 133 99 71 60 77 66 144 71 32 0.036 157.636 0.010 0.039
15 0 0.98 9.18 270.9 5.93 254.07 1.021 -25 -19 -1.540 4.436 85 96 91 110 99 74 61 76 62 144 74 28 0.006 131.917 0.004 0.007
16 1 3.74 0.10 270.7 0.00 -1.00 1.000 -25 -19 0.000 0.000 80 87 82 107 101 73 58 77 65 144 73 31 0.013 86.705 0.003 0.055
17 0 1.74 0.16 264.5 0.00 -1.00 1.000 -25 -19 0.000 0.000 118 128 110 171 100 72 60 80 67 144 72 32 0.028 165.555 0.004 0.019
18 1 2.46 8.40 271.2 6.57 145.99 1.027 326 299 12.125 -5.298 105 110 101 182 101 71 59 78 65 144 71 30 0.078 304.982 0.015 0.103
19 0 1.59 0.26 266.6 1.55 45.00 1.003 -25 -19 0.000 0.000 123 143 116 203 98 72 59 79 66 145 72 30 0.017 50.673 0.002 0.011
20 0 0.56 8.53 268.6 3.69 263.14 1.013 91 139 4.142 -5.461 12 15 22 26 99 73 58 76 65 144 73 31 0.046 184.377 0.003 0.022
21 1 4.78 0.25 270.4 21.37 199.31 1.080 91 139 6.468 -3.416 30 36 37 104 98 72 57 76 60 143 72 28 0.108 134.987 0.006 0.067
22 0 0.81 8.90 270.7 8.20 83.15 1.013 -25 -19 -1.317 2.332 97 97 99 151 100 73 60 79 72 144 73 35 0.033 206.909 0.008 0.017
23 1 3.05 0.39 266.2 0.00 -1.00 1.000 -25 -19 0.000 0.000 94 102 88 115 99 72 59 76 68 143 72 30 0.027 112.726 0.010 0.025
24 1 5.26 0.22 270.5 0.00 -1.00 1.000 -25 -19 0.000 0.000 84 100 93 145 101 73 57 78 68 144 73 33 0.019 125.532 0.004 0.033
25 1 4.59 0.31 249.8 5.78 264.75 1.008 -25 -19 -1.704 1.208 98 103 96 75 95 68 55 74 63 143 68 31 0.018 304.319 0.015 0.053
26 1 2.44 0.24 248.7 13.37 221.65 1.031 -25 -19 -2.380 0.475 146 141 135 180 96 69 55 79 64 143 69 30 0.132 52.084 0.006 0.027
27 0 2.00 1.67 257.5 6.01 346.93 1.012 91 139 5.265 -3.234 101 115 101 145 93 71 55 75 63 143 71 28 0.042 89.845 0.013 0.029
28 0 1.05 0.18 254.2 6.13 184.54 1.010 -25 -19 -3.412 3.385 44 44 42 79 96 69 55 75 59 143 69 27 0.031 349.663 0.017 0.108
29 0 1.24 7.15 268.0 10.99 270.35 1.021 -25 -19 1.654 -0.885 131 129 125 153 98 71 56 79 65 143 71 29 0.018 30.049 0.005 0.027
30 0 2.23 1.15 251.2 3.28 181.82 1.004 -25 -19 -2.646 2.646 60 71 62 104 96 69 55 78 63 143 69 30 0.015 219.970 0.003 0.009
31 0 1.11 7.68 276.8 10.05 231.30 1.020 -25 -19 -3.160 3.095 104 113 96 112 97 68 56 73 61 143 68 30 0.060 176.706 0.015 0.090
32 0 0.43 6.82 258.0 4.71 306.53 1.007 -25 -19 -3.245 3.015 156 158 158 174 96 71 56 81 65 143 71 29 0.065 24.845 0.016 0.055
33 1 3.96 8.45 277.8 4.02 111.80 1.005 -25 -19 -3.233 2.823 137 139 127 142 100 72 58 83 68 144 72 30 0.053 274.680 0.007 0.012
34 0 2.34 3.63 269.9 6.13 223.72 1.007 91 -19 -1.812 1.182 151 157 141 183 97 71 53 75 61 142 71 27 0.037 231.109 0.005 0.010
35 0 2.28 0.33 266.0 4.94 352.09 1.005 -25 -19 -2.551 0.794 146 155 141 190 96 69 55 81 64 143 69 30 0.058 42.067 0.006 0.053
36 0 0.16 8.63 271.7 13.14 256.07 1.028 -25 -19 1.871 -1.633 43 46 47 56 95 68 55 76 63 143 68 29 0.046 48.510 0.013 0.017
37 0 0.19 8.32 266.0 5.20 102.21 1.007 91 139 4.394 -2.349 141 149 140 199 96 69 55 79 65 142 69 31 0.036 112.026 0.007 0.052
38 0 1.50 7.37 279.4 4.43 45.59 1.006 -25 -19 -0.930 1.607 159 159 156 159 95 71 56 77 63 143 71 31 0.023 194.096 0.004 0.051
39 0 0.27 6.50 268.6 10.67 215.58 1.030 91 139 9.132 -3.324 117 127 114 147 98 70 56 82 68 144 70 32 0.011 77.544 0.005 0.014
40 0 0.29 7.67 285.4 7.04 170.91 1.008 91 -19 1.834 -1.334 76 94 78 161 98 70 57 78 66 144 70 31 0.037 242.714 0.008 0.018
41 1 2.55 8.62 273.0 21.77 182.02 1.082 -143 -19 2.599 -2.105 167 168 158 177 96 72 57 78 67 143 72 32 0.023 94.469 0.011 0.010
42 0 0.94 7.59 282.0 5.72 118.53 1.009 91 -19 0.568 1.429 73 89 69 105 97 70 56 81 67 144 70 31 0.008 307.578 0.006 0.034
43 0 0.59 7.50 272.2 3.64 349.28 1.004 -25 -19 -1.417 1.890 137 133 133 94 98 73 59 81 67 144 73 30 0.014 210.589 0.015 0.018
44 0 1.39 6.00 274.8 6.98 46.22 1.018 208 139 5.816 -2.157 144 150 142 148 98 71 58 80 70 144 71 31 0.092 107.275 0.021 0.047
45 0 0.26 5.98 274.5 19.61 105.91 1.064 -25 -19 -2.862 2.118 92 92 95 85 98 72 58 79 68 143 72 32 0.050 57.527 0.012 0.049
46 1 2.48 0.20 274.9 4.95 337.50 1.006 91 -19 -1.421 -0.180 147 150 135 137 100 73 58 76 63 144 73 33 0.110 40.965 0.042 0.054
47 0 2.14 2.37 275.7 10.38 102.76 1.026 91 139 5.354 -5.110 154 153 148 132 97 72 55 78 69 143 72 32 0.030 61.234 0.002 0.017
48 0 0.95 0.44 272.2 12.92 117.77 1.031 -25 -19 -3.472 0.215 136 137 130 150 100 75 61 81 73 144 75 35 0.016 109.907 0.005 0.007
49 0 1.25 8.83 278.2 4.08 77.96 1.008 -143 -19 -4.903 1.973 150 158 154 167 100 74 60 80 69 144 74 32 0.068 49.075 0.010 0.085
50 0 0.17 9.35 275.5 5.63 203.60 1.008 -25 -19 -1.051 2.292 90 104 96 132 101 73 59 73 59 143 73 29 0.109 278.980 0.005 0.015
51 0 0.70 9.14 284.0 4.75 146.21 1.009 -25 -19 -2.914 2.805 146 155 143 148 98 71 58 75 64 144 71 30 0.013 147.336 0.002 0.013
52 0 1.10 9.33 290.2 12.01 294.44 1.028 208 139 4.473 -3.790 116 129 113 148 98 72 59 75 61 144 72 31 0.056 125.583 0.021 0.022
53 0 1.91 9.40 276.9 12.68 253.00 1.037 -143 -19 -6.064 3.976 105 121 103 168 100 72 58 76 64 144 72 31 0.033 251.784 0.022 0.090
54 0 0.00 9.78 294.0 10.92 341.80 1.021 91 139 2.232 -0.198 90 97 94 89 99 72 58 79 66 143 72 30 0.048 68.149 0.002 0.011
55 0 0.00 9.40 268.9 2.17 35.45 1.004 -25 -19 -2.431 2.400 120 129 100 181 99 72 58 78 65 145 72 32 0.028 292.012 0.005 0.011
56 0 1.92 9.29 285.5 5.49 45.85 1.007 -25 -19 0.936 0.173 98 103 103 55 99 71 57 74 62 144 71 30 0.024 18.470 0.007 0.033
57 0 0.11 9.05 267.6 1.88 30.84 1.005 -25 -19 -1.091 -1.330 41 47 46 89 100 71 59 80 67 142 71 29 0.041 103.228 0.018 0.107
58 0 1.37 8.67 261.2 9.02 14.96 1.016 -25 -19 1.756 -1.916 97 104 103 103 97 73 57 76 64 142 73 30 0.034 125.835 0.022 0.044
59 0 0.71 8.92 277.5 10.63 298.68 1.018 -25 -19 -0.471 0.476 125 133 115 98 100 71 57 74 60 143 71 29 0.044 204.096 0.006 0.088
60 0 0.00 8.22 265.6 19.20 337.08 1.064 91 -19 3.555 0.154 68 79 74 100 98 72 56 76 64 143 72 29 0.030 252.886 0.008 0.040
61 0 0.05 8.22 265.2 16.88 324.05 1.060 -25 -19 -2.995 5.147 83 84 86 43 100 71 56 76 62 143 71 27 0.094 281.622 0.015 0.026
62 1 4.35 6.94 250.4 8.10 355.81 1.018 -25 -19 -0.092 -0.766 131 139 127 155 101 72 59 76 59 143 72 28 0.025 333.137 0.004 0.032
63 0 0.64 8.43 255.2 1.27 8.72 1.002 -25 -19 -1.526 -0.487 95 104 106 90 101 73 56 79 66 143 73 32 0.139 189.825 0.020 0.069
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Appendix Table.  The response variables and remotely sensed predictors used in the NPMR models.
   Response variables   Predictors

Profile Binomial Change in Ruggedness Topo postion index Slope direction                        Ikonos Bands                                                     Landsat Bands March 2003                                                        AIRSAR polarized p-Band        
Number 13C enrich 13C CO3

=-C Elevation Slope Aspect Index Broad Fine Curvature Curvature R G B NDVI B1 B2 B3 B4 B5 B61 B62 B7 phh phhvv phv pvv
‰ % m (msl) % degrees

64 1 2.45 0.47 250.2 11.70 71.93 1.022 91 -19 0.470 0.817 156 156 153 128 98 71 59 77 68 144 71 32 0.023 44.180 0.013 0.051
65 0 0.94 0.95 251.2 8.45 13.92 1.021 208 299 7.619 -2.883 150 151 143 152 98 71 56 80 65 144 71 31 0.074 236.227 0.006 0.038
66 0 0.43 8.44 254.2 4.09 328.22 1.003 -25 -19 -1.637 1.161 109 118 101 85 100 72 58 77 61 144 72 30 0.025 110.561 0.002 0.063
67 0 2.38 0.29 243.9 2.85 16.27 1.002 -25 -19 1.541 -0.334 113 111 110 89 98 73 57 76 67 143 73 32 0.039 250.058 0.015 0.038
68 1 2.86 0.27 241.1 0.00 -1.00 1.000 -25 -19 0.000 0.000 129 127 122 120 101 74 62 77 69 143 74 32 0.079 95.965 0.011 0.044
69 1 4.81 1.33 245.7 8.35 305.21 1.021 -25 -19 3.147 -1.926 114 121 107 156 99 73 58 76 63 143 73 30 0.030 103.006 0.013 0.040
70 0 1.08 9.75 281.4 21.87 130.65 1.090 -25 -19 -1.302 0.136 155 160 151 177 99 76 61 78 76 143 76 38 0.029 274.554 0.005 0.044
71 0 0.63 8.59 279.4 4.35 5.03 1.004 -25 -19 -1.804 1.680 129 140 113 178 99 73 59 79 70 143 73 33 0.034 108.562 0.009 0.029
72 0 0.49 8.82 275.2 8.89 210.33 1.026 -143 -179 -10.044 6.354 76 90 80 101 104 70 57 73 64 143 70 30 0.025 181.547 0.008 0.019
73 0 0.08 7.80 258.3 4.50 300.03 1.006 -25 -19 -4.191 2.732 101 106 98 141 94 68 55 79 62 143 68 29 0.044 111.102 0.012 0.042
74 0 0.99 4.95 265.0 11.60 260.86 1.022 91 -19 -2.174 0.769 143 149 134 176 96 70 54 76 60 143 70 28 0.040 50.600 0.016 0.060
75 1 5.73 0.94 258.1 1.88 337.27 1.002 -25 -19 -0.396 -0.946 158 163 156 197 95 67 54 80 61 144 67 28 0.091 229.971 0.011 0.103
76 0 0.45 8.92 259.4 18.65 163.21 1.069 208 139 5.990 -2.296 122 125 122 124 94 69 55 83 69 143 69 31 0.032 241.101 0.005 0.022
77 0 0.28 0.23 253.6 1.85 212.41 1.002 -25 -19 -0.699 0.699 140 151 145 172 92 65 52 78 61 142 65 29 0.026 186.025 0.003 0.019
78 0 0.00 0.25 258.6 5.23 330.77 1.008 91 139 2.786 -1.519 129 135 126 154 92 65 53 78 61 144 65 29 0.269 192.479 0.031 0.062
79 0 1.27 6.68 267.1 0.00 -1.00 1.000 -25 -19 0.000 0.000 33 41 33 62 102 75 63 78 75 143 75 38 0.010 233.462 0.003 0.033
80 0 0.29 7.26 273.5 10.03 121.67 1.019 -25 -19 -2.341 2.344 134 147 118 174 98 75 59 80 76 143 75 37 0.028 50.096 0.012 0.051
81 0 1.40 5.07 274.1 14.32 54.85 1.034 -25 -19 -0.100 0.922 54 62 54 38 100 73 61 80 73 143 73 34 0.027 47.756 0.016 0.023
82 0 0.23 7.93 279.9 13.91 219.28 1.034 -25 -19 0.408 1.635 89 105 88 107 102 77 61 79 78 143 77 41 0.024 323.545 0.015 0.108
83 1 2.64 8.12 279.1 11.84 123.51 1.031 91 139 4.345 -4.505 115 125 107 152 105 73 60 77 67 143 73 33 0.033 214.046 0.009 0.045
84 0 0.24 8.54 277.4 13.02 144.51 1.030 91 139 4.393 -1.565 128 127 126 157 99 73 61 75 74 143 73 37 0.024 49.261 0.017 0.087
85 0 1.78 0.17 274.6 12.65 38.01 1.026 -25 -19 -2.152 1.406 116 126 111 179 99 71 58 75 70 143 71 35 0.119 320.055 0.006 0.025
86 1 4.45 0.34 273.3 6.53 310.71 1.018 -25 -19 -1.298 -2.163 168 170 160 195 100 73 61 78 65 144 73 33 0.040 143.783 0.013 0.046
87 0 0.75 9.39 285.8 6.61 253.02 1.009 -25 -19 -1.447 1.666 115 126 106 140 97 73 60 80 69 144 73 35 0.041 39.293 0.009 0.034
88 0 0.00 7.69 269.6 5.79 347.49 1.006 -25 -19 1.231 -0.179 125 138 119 133 99 72 55 77 62 143 72 30 0.023 43.503 0.013 0.053
89 0 1.55 6.66 273.7 0.18 225.00 1.000 -25 -19 0.000 0.000 135 133 129 71 98 74 58 77 65 144 74 30 0.010 136.446 0.007 0.013
90 0 2.38 8.35 275.5 9.24 263.24 1.016 -25 -19 0.991 0.029 97 106 96 136 98 72 58 75 68 144 72 33 0.046 269.002 0.028 0.043
91 1 2.63 0.28 273.4 2.72 20.59 1.004 -25 -19 -1.133 1.141 74 76 76 69 98 71 56 77 64 143 71 33 0.085 47.343 0.012 0.076
92 0 0.87 0.36 273.4 4.18 3.92 1.006 -25 -19 -3.265 3.288 106 118 107 169 100 72 59 76 63 144 72 32 0.069 269.931 0.031 0.063
93 0 0.17 7.14 271.6 0.44 151.31 1.001 -25 -19 -0.242 0.798 109 124 106 146 99 72 58 79 68 144 72 31 0.022 57.074 0.002 0.012
94 0 0.00 3.19 267.0 7.97 54.07 1.013 -25 -19 -3.050 2.478 135 139 129 196 98 71 57 79 65 144 71 31 0.039 239.159 0.017 0.029
95 0 1.02 8.21 266.6 3.42 284.51 1.004 -25 -19 -1.022 1.214 54 61 54 108 99 73 58 78 63 144 73 31 0.057 262.316 0.014 0.071
96 0 0.85 8.85 268.8 4.66 241.09 1.011 -25 -19 -2.557 2.557 156 158 156 181 98 72 58 82 68 144 72 31 0.007 73.687 0.020 0.013
97 0 0.94 0.50 269.7 8.31 83.83 1.011 -25 -19 -0.498 0.265 92 102 95 158 99 72 57 79 72 144 72 36 0.019 301.125 0.008 0.022
98 0 0.55 7.51 270.5 3.98 68.35 1.007 -25 -19 -2.351 2.351 129 135 122 131 98 70 57 73 64 143 70 31 0.043 16.393 0.014 0.035
99 0 0.72 10.41 254.9 3.30 164.77 1.005 208 139 4.276 -2.615 - - - - 97 70 56 83 63 142 70 29 0.058 277.899 0.013 0.056
100 0 0.75 8.85 254.9 3.30 164.77 1.005 208 139 4.276 -2.615 - - - - 97 70 56 83 63 142 70 29 0.058 277.899 0.013 0.056
101 1 2.95 8.86 254.9 3.30 164.77 1.005 208 139 4.276 -2.615 - - - - 97 70 56 83 63 142 70 29 0.058 277.899 0.013 0.056
102 1 2.51 8.15 254.9 3.30 164.77 1.005 208 139 4.276 -2.615 - - - - 97 70 56 83 63 142 70 29 0.058 277.899 0.013 0.056
103 1 2.47 6.19 254.9 3.30 164.77 1.005 208 139 4.276 -2.615 - - - - 97 70 56 83 63 142 70 29 0.058 277.899 0.013 0.056
104 0 0.36 6.31 254.1 10.08 132.44 1.024 208 139 4.935 -1.057 - - - - 97 70 56 83 63 142 70 29 0.102 250.719 0.019 0.048
105 0 0.00 0.45 252.9 14.16 98.39 1.036 91 -19 0.822 -0.234 - - - - 97 70 56 83 63 142 70 29 0.076 157.037 0.052 0.060
106 0 0.13 0.18 251.6 11.49 81.02 1.024 -25 -19 -2.723 2.111 - - - - 97 70 56 83 63 142 70 29 0.031 125.932 0.044 0.152
107 0 2.17 10.18 251.2 7.04 54.83 1.008 -25 -19 -0.810 0.229 - - - - 97 73 57 86 65 143 73 30 0.032 231.685 0.066 0.130
108 0 1.13 0.27 250.8 6.74 52.12 1.007 -25 -19 -0.128 0.182 - - - - 97 72 56 84 66 142 72 31 0.107 134.204 0.008 0.049
109 1 2.83 10.27 253.6 4.79 98.68 1.004 -25 -19 0.751 -1.029 - - - - 96 70 57 85 65 143 70 27 0.033 124.555 0.008 0.122
110 0 0.87 10.18 254.4 6.52 56.81 1.009 -25 -19 2.552 -2.070 - - - - 96 68 54 82 64 143 68 29 0.063 53.866 0.019 0.090
111 0 0.54 9.29 256.1 3.16 344.95 1.003 91 -19 1.714 -1.798 - - - - 95 69 54 81 63 142 69 30 0.042 323.724 0.014 0.026
112 0 0.33 8.67 250.2 10.63 138.06 1.023 91 139 5.242 -3.383 - - - - 93 69 55 82 65 143 69 31 0.032 296.274 0.007 0.010
113 1 3.64 0.30 240.1 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 98 71 56 81 69 142 71 29 0.044 352.184 0.015 0.049
114 0 0.36 8.77 245.9 20.95 56.19 1.074 -25 -19 -5.595 3.703 - - - - 102 75 60 84 70 142 75 33 0.133 305.362 0.013 0.031
115 0 0.17 5.06 241.7 17.30 94.87 1.049 -143 -19 -3.080 1.884 - - - - 101 74 60 82 67 142 74 30 0.090 121.866 0.017 0.016
116 1 3.30 0.20 236.9 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 102 74 58 85 66 142 74 30 0.071 306.208 0.009 0.057
117 1 7.77 0.31 236.3 17.59 178.27 1.051 91 139 3.070 -1.954 - - - - 104 75 61 80 66 142 75 31 0.086 109.487 0.048 0.043
118 1 8.43 0.09 232.0 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 103 75 60 85 68 142 75 32 0.082 103.897 0.025 0.079
119 0 1.46 7.27 236.4 19.60 115.18 1.063 91 139 2.389 -1.302 - - - - 102 75 61 83 65 142 75 30 0.042 209.659 0.008 0.035
120 0 0.41 9.94 239.7 17.59 137.43 1.051 91 139 0.767 -0.412 - - - - 100 75 59 83 65 141 75 30 0.102 165.361 0.009 0.125
121 1 2.97 0.08 231.7 1.58 105.31 1.001 -25 -19 0.244 -0.678 - - - - 101 75 64 82 67 142 75 31 0.160 78.495 0.009 0.022
122 0 1.53 4.46 238.1 6.01 305.22 1.006 -25 -19 -0.521 0.174 - - - - 102 74 61 77 70 143 74 35 0.074 292.889 0.015 0.060
123 0 1.68 3.61 238.6 3.21 256.27 1.002 91 -19 1.181 -1.299 - - - - 102 75 61 78 67 143 75 31 0.081 331.758 0.019 0.032
124 1 4.89 0.39 233.5 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 102 74 61 78 69 143 74 32 0.084 297.264 0.006 0.060
125 1 4.47 0.69 234.4 9.14 334.15 1.016 -25 -19 2.309 -0.628 - - - - 100 73 62 76 71 142 73 35 0.134 87.733 0.013 0.026
126 1 5.65 0.42 233.5 0.38 234.99 1.000 -25 -19 -0.131 0.131 - - - - 101 74 61 79 72 143 74 34 0.061 113.811 0.013 0.030
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Appendix Table.  The response variables and remotely sensed predictors used in the NPMR models.
   Response variables   Predictors

Profile Binomial Change in Ruggedness Topo postion index Slope direction                        Ikonos Bands                                                     Landsat Bands March 2003                                                        AIRSAR polarized p-Band        
Number 13C enrich 13C CO3

=-C Elevation Slope Aspect Index Broad Fine Curvature Curvature R G B NDVI B1 B2 B3 B4 B5 B61 B62 B7 phh phhvv phv pvv
‰ % m (msl) % degrees

127 1 5.65 0.53 233.5 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 101 74 58 81 72 143 74 35 0.073 155.817 0.029 0.025
128 1 5.90 0.66 233.5 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 100 73 61 83 72 142 73 33 0.076 333.942 0.017 0.027
129 1 6.18 3.90 240.5 11.47 298.34 1.021 -25 -19 -1.360 1.327 - - - - 102 75 60 81 68 142 75 31 0.047 273.448 0.007 0.152
130 0 0.52 7.17 246.7 7.34 256.69 1.014 -25 -19 2.715 -3.323 - - - - 100 73 60 85 68 142 73 32 0.098 133.331 0.012 0.063
131 0 0.69 3.74 239.1 3.39 114.00 1.003 -25 -19 -1.479 0.821 - - - - 101 74 60 83 65 141 74 32 0.087 250.494 0.010 0.145
132 0 1.92 2.61 228.7 0.20 135.00 1.000 -25 -19 0.000 0.000 - - - - 101 74 59 80 65 142 74 31 0.009 300.222 0.006 0.015
133 1 5.25 2.37 228.7 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 101 74 60 82 67 142 74 31 0.013 301.204 0.014 0.017
134 0 0.59 7.93 238.2 8.66 168.81 1.013 -25 -19 0.009 0.990 - - - - 101 74 58 85 63 142 74 29 0.174 319.690 0.019 0.029
135 0 0.28 7.63 240.1 7.35 174.36 1.012 -25 -19 -2.588 0.451 - - - - 102 75 60 86 66 141 75 30 0.071 153.026 0.001 0.096
136 0 1.15 8.04 242.3 7.90 83.32 1.011 91 -19 2.900 -1.812 - - - - 99 74 60 88 69 142 74 31 0.024 191.154 0.014 0.021
137 0 0.46 6.54 239.0 3.54 290.67 1.003 -25 -19 0.384 -0.248 - - - - 101 74 58 84 66 142 74 28 0.094 250.032 0.012 0.005
138 0 0.72 8.61 236.7 4.09 324.00 1.004 -25 -19 1.827 -0.691 - - - - 101 72 59 84 66 142 72 31 0.029 203.618 0.007 0.020
139 0 0.66 8.78 229.1 7.60 289.33 1.014 91 139 3.078 -3.382 - - - - 102 74 58 81 61 141 74 27 0.036 39.075 0.013 0.012
140 0 2.37 2.74 225.0 9.43 277.62 1.020 -25 -19 0.728 -2.860 - - - - 100 73 57 78 62 141 73 28 0.028 128.297 0.005 0.031
141 0 0.45 7.63 222.5 4.77 270.49 1.008 -25 -19 -1.953 0.897 - - - - 102 75 59 80 63 141 75 28 0.185 235.552 0.004 0.011
142 0 2.15 0.18 251.8 5.38 136.58 1.007 -25 -19 -3.575 2.613 - - - - 91 67 52 81 67 145 67 32 0.092 29.424 0.017 0.032
143 0 0.14 2.04 256.0 3.25 212.35 1.004 -25 -19 -2.486 1.774 - - - - 91 66 53 80 66 145 66 31 0.266 267.296 0.024 0.039
144 0 0.99 0.59 261.9 2.97 67.64 1.003 91 139 1.899 0.193 - - - - 90 66 53 81 67 144 66 31 0.094 291.285 0.032 0.042
145 0 0.12 6.57 264.5 1.65 226.15 1.001 -25 -19 -1.256 0.778 - - - - 92 67 54 79 72 144 67 33 0.062 336.497 0.010 0.070
146 0 0.12 5.82 265.9 8.45 27.97 1.012 -25 -19 -0.157 -0.070 - - - - 90 66 54 77 71 145 66 35 0.051 260.485 0.004 0.048
147 0 0.00 9.64 269.5 7.24 39.02 1.016 208 139 6.103 -2.183 - - - - 91 66 53 76 70 146 66 33 0.141 20.361 0.037 0.104
148 0 0.49 3.52 254.3 5.12 297.78 1.009 -143 -19 -3.779 3.366 - - - - 91 66 55 77 70 145 66 35 0.065 55.973 0.008 0.084
149 1 2.99 0.23 250.2 6.83 325.37 1.008 -25 -19 -0.003 0.307 - - - - 91 67 54 76 68 145 67 32 0.004 134.029 0.040 0.079
150 1 3.46 0.19 242.1 0.72 134.02 1.001 -25 -19 -0.024 0.024 - - - - 90 67 53 75 70 146 67 34 0.074 180.686 0.014 0.022
151 0 0.00 7.67 246.7 5.61 205.45 1.005 -25 -19 0.434 0.388 - - - - 90 65 53 79 68 146 65 32 0.048 241.829 0.010 0.048
152 0 0.39 5.85 247.2 10.79 329.15 1.018 91 139 1.293 -0.331 - - - - 90 68 56 75 67 145 68 33 0.016 232.225 0.004 0.015
153 0 0.21 7.29 240.4 2.38 296.63 1.001 -25 -19 -1.353 0.441 - - - - 93 65 53 76 65 145 65 31 0.174 115.899 0.027 0.060
154 1 3.35 0.02 230.2 2.19 70.45 1.002 -25 -19 -0.928 1.291 - - - - 91 65 52 75 75 146 65 35 0.024 286.185 0.022 0.145
155 0 0.00 7.56 255.9 2.20 7.28 1.003 91 -19 0.606 -1.672 - - - - 97 70 54 79 63 141 70 29 0.086 290.034 0.010 0.056
156 0 1.54 1.29 249.6 2.60 7.38 1.001 91 -19 1.124 -0.940 - - - - 96 70 56 76 64 142 70 31 0.051 124.547 0.012 0.009
157 0 0.85 0.22 247.6 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 96 72 55 81 71 141 72 35 0.052 28.271 0.011 0.071
158 1 8.08 0.22 252.4 18.59 219.86 1.064 91 139 1.236 -2.409 - - - - 101 70 56 80 71 142 70 34 0.033 143.976 0.003 0.014
159 0 0.32 3.53 273.4 30.42 82.95 1.200 -260 -338 -15.306 12.013 - - - - 99 72 59 87 76 143 72 36 0.020 16.359 0.005 0.055
160 0 0.00 7.74 256.3 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 97 72 56 81 62 141 72 30 0.055 41.942 0.015 0.025
161 0 0.98 2.88 257.5 5.08 249.11 1.005 91 -19 1.164 0.413 - - - - 100 71 56 82 67 141 71 30 0.055 116.710 0.012 0.058
162 0 0.08 3.30 254.9 8.92 234.84 1.016 -25 -19 -1.658 1.051 - - - - 99 72 57 82 64 141 72 29 0.057 329.540 0.008 0.025
163 0 0.56 6.27 252.7 7.46 185.99 1.012 -25 -19 -1.679 -0.768 - - - - 100 74 60 83 67 142 74 32 0.104 70.715 0.033 0.049
164 0 0.45 7.29 256.3 0.00 -1.00 1.000 -25 -19 0.000 0.000 - - - - 99 71 58 81 62 141 71 27 0.020 113.134 0.011 0.030
165 0 0.00 6.89 258.3 6.03 309.83 1.006 -25 -19 2.172 -0.966 - - - - 97 71 57 81 64 141 71 29 0.023 81.799 0.031 0.060
166 0 1.62 3.51 255.6 9.97 148.58 1.018 -25 -19 1.768 0.329 - - - - 102 72 55 83 67 141 72 30 0.034 276.553 0.007 0.061
167 0 0.14 7.20 253.7 8.18 286.31 1.012 -25 -19 -1.677 0.674 - - - - 99 72 58 80 65 142 72 29 0.081 216.488 0.004 0.020
168 0 0.00 2.37 254.7 14.46 105.99 1.037 91 139 4.576 -3.926 - - - - 99 72 59 82 67 142 72 30 0.043 140.730 0.025 0.043
169 0 1.55 1.05 251.1 3.26 340.12 1.003 -25 -19 1.127 0.476 - - - - 100 75 60 84 67 142 75 31 0.097 197.328 0.048 0.024
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